About the Project

argument a fraction

AdvancedHelp

(0.005 seconds)

21—26 of 26 matching pages

21: Bibliography K
  • D. Karp, A. Savenkova, and S. M. Sitnik (2007) Series expansions for the third incomplete elliptic integral via partial fraction decompositions. J. Comput. Appl. Math. 207 (2), pp. 331–337.
  • M. Kodama (2008) Algorithm 877: A subroutine package for cylindrical functions of complex order and nonnegative argument. ACM Trans. Math. Software 34 (4), pp. Art. 22, 21.
  • M. Kodama (2011) Algorithm 912: a module for calculating cylindrical functions of complex order and complex argument. ACM Trans. Math. Software 37 (4), pp. Art. 47, 25.
  • P. Koev and A. Edelman (2006) The efficient evaluation of the hypergeometric function of a matrix argument. Math. Comp. 75 (254), pp. 833–846.
  • P. Kravanja, O. Ragos, M. N. Vrahatis, and F. A. Zafiropoulos (1998) ZEBEC: A mathematical software package for computing simple zeros of Bessel functions of real order and complex argument. Comput. Phys. Comm. 113 (2-3), pp. 220–238.
  • 22: Bibliography L
  • W. J. Lentz (1976) Generating Bessel functions in Mie scattering calculations using continued fractions. Applied Optics 15 (3), pp. 668–671.
  • S. Lewanowicz (1985) Recurrence relations for hypergeometric functions of unit argument. Math. Comp. 45 (172), pp. 521–535.
  • L.-W. Li, M. Leong, T.-S. Yeo, P.-S. Kooi, and K.-Y. Tan (1998a) Computations of spheroidal harmonics with complex arguments: A review with an algorithm. Phys. Rev. E 58 (5), pp. 6792–6806.
  • L. Lorentzen and H. Waadeland (1992) Continued Fractions with Applications. Studies in Computational Mathematics, North-Holland Publishing Co., Amsterdam.
  • E. R. Love (1972b) Two index laws for fractional integrals and derivatives. J. Austral. Math. Soc. 14, pp. 385–410.
  • 23: 10.74 Methods of Computation
    The power-series expansions given in §§10.2 and 10.8, together with the connection formulas of §10.4, can be used to compute the Bessel and Hankel functions when the argument x or z is sufficiently small in absolute value. … It should be noted, however, that there is a difficulty in evaluating the coefficients A k ( ζ ) , B k ( ζ ) , C k ( ζ ) , and D k ( ζ ) , from the explicit expressions (10.20.10)–(10.20.13) when z is close to 1 owing to severe cancellation. … A comprehensive and powerful approach is to integrate the differential equations (10.2.1) and (10.25.1) by direct numerical methods. …
    §10.74(v) Continued Fractions
    For applications of the continued-fraction expansions (10.10.1), (10.10.2), (10.33.1), and (10.33.2) to the computation of Bessel functions and modified Bessel functions see Gargantini and Henrici (1967), Amos (1974), Gautschi and Slavik (1978), Tretter and Walster (1980), Thompson and Barnett (1986), and Cuyt et al. (2008). …
    24: Bibliography O
  • A. B. Olde Daalhuis (1998a) Hyperasymptotic solutions of higher order linear differential equations with a singularity of rank one. Proc. Roy. Soc. London Ser. A 454, pp. 1–29.
  • A. B. Olde Daalhuis (2005a) Hyperasymptotics for nonlinear ODEs. I. A Riccati equation. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2060), pp. 2503–2520.
  • I. Olkin (1959) A class of integral identities with matrix argument. Duke Math. J. 26 (2), pp. 207–213.
  • F. W. J. Olver (1977c) Second-order differential equations with fractional transition points. Trans. Amer. Math. Soc. 226, pp. 227–241.
  • C. Osácar, J. Palacián, and M. Palacios (1995) Numerical evaluation of the dilogarithm of complex argument. Celestial Mech. Dynam. Astronom. 62 (1), pp. 93–98.
  • 25: Bibliography
  • A. Abramov (1960) Tables of ln Γ ( z ) for Complex Argument. Pergamon Press, New York.
  • D. E. Amos (1985) A subroutine package for Bessel functions of a complex argument and nonnegative order. Technical Report Technical Report SAND85-1018, Sandia National Laboratories, Albuquerque, NM.
  • D. E. Amos (1986) Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order. ACM Trans. Math. Software 12 (3), pp. 265–273.
  • D. E. Amos (1990) Algorithm 683: A portable FORTRAN subroutine for exponential integrals of a complex argument. ACM Trans. Math. Software 16 (2), pp. 178–182.
  • R. Askey and M. E. H. Ismail (1984) Recurrence relations, continued fractions, and orthogonal polynomials. Mem. Amer. Math. Soc. 49 (300), pp. iv+108.
  • 26: Errata
  • Equations (9.7.3), (9.7.4)

    Originally the function χ was presented with argument given by a positive integer n . It has now been clarified to be valid for argument given by a positive real number x .

  • Subsections 1.15(vi), 1.15(vii), 2.6(iii)

    A number of changes were made with regard to fractional integrals and derivatives. In §1.15(vi) a reference to Miller and Ross (1993) was added, the fractional integral operator of order α was more precisely identified as the Riemann-Liouville fractional integral operator of order α , and a paragraph was added below (1.15.50) to generalize (1.15.47). In §1.15(vii) the sentence defining the fractional derivative was clarified. In §2.6(iii) the identification of the Riemann-Liouville fractional integral operator was made consistent with §1.15(vi).

  • Equation (15.6.8)

    In §15.6, it was noted that (15.6.8) can be rewritten as a fractional integral.

  • Subsection 13.29(v)

    A new Subsection Continued Fractions, has been added to cover computation of confluent hypergeometric functions by continued fractions.

  • Subsection 15.19(v)

    A new Subsection Continued Fractions, has been added to cover computation of the Gauss hypergeometric functions by continued fractions.