About the Project

applied to generalized hypergeometric functions

AdvancedHelp

(0.017 seconds)

11—20 of 50 matching pages

11: 2.10 Sums and Sequences
For extensions of the Euler–Maclaurin formula to functions f ( x ) with singularities at x = a or x = n (or both) see Sidi (2004, 2012b, 2012a). … The asymptotic behavior of entire functions defined by Maclaurin series can be approached by converting the sum into a contour integral by use of the residue theorem and applying the methods of §§2.4 and 2.5. … Hence … For generalizations and other examples see Olver (1997b, Chapter 8), Ford (1960), and Berndt and Evans (1984). … However, if r is finite and f ( z ) has algebraic or logarithmic singularities on | z | = r , then Darboux’s method is usually easier to apply. …
12: 16.8 Differential Equations
§16.8(ii) The Generalized Hypergeometric Differential Equation
In Letessier et al. (1994) examples are discussed in which the generalized hypergeometric function satisfies a differential equation that is of order 1 or even 2 less than might be expected. … (Note that the generalized hypergeometric functions on the right-hand side are polynomials in z 0 .) … In this reference it is also explained that in general when q > 1 no simple representations in terms of generalized hypergeometric functions are available for the fundamental solutions near z = 1 . …
13: 13.14 Definitions and Basic Properties
Standard solutions are: … In general M κ , μ ( z ) and W κ , μ ( z ) are many-valued functions of z with branch points at z = 0 and z = . The principal branches correspond to the principal branches of the functions z 1 2 + μ and U ( 1 2 + μ κ , 1 + 2 μ , z ) on the right-hand sides of the equations (13.14.2) and (13.14.3); compare §4.2(i). … Although M κ , μ ( z ) does not exist when 2 μ = 1 , 2 , 3 , , many formulas containing M κ , μ ( z ) continue to apply in their limiting form. … Also, unless specified otherwise M κ , μ ( z ) and W κ , μ ( z ) are assumed to have their principal values. …
14: 19.16 Definitions
§19.16(ii) R a ( 𝐛 ; 𝐳 )
All elliptic integrals of the form (19.2.3) and many multiple integrals, including (19.23.6) and (19.23.6_5), are special cases of a multivariate hypergeometric function …which is homogeneous and of degree a in the z ’s, and unchanged when the same permutation is applied to both sets of subscripts 1 , , n . … For generalizations and further information, especially representation of the R -function as a Dirichlet average, see Carlson (1977b). …
15: 15.9 Relations to Other Functions
§15.9(i) Orthogonal Polynomials
Jacobi
Legendre
Meixner
The following formulas apply with principal branches of the hypergeometric functions, associated Legendre functions, and fractional powers. …
16: Bibliography S
  • J. B. Seaborn (1991) Hypergeometric Functions and Their Applications. Texts in Applied Mathematics, Vol. 8, Springer-Verlag, New York.
  • L. J. Slater (1966) Generalized Hypergeometric Functions. Cambridge University Press, Cambridge.
  • D. Slepian (1964) Prolate spheroidal wave functions, Fourier analysis and uncertainity. IV. Extensions to many dimensions; generalized prolate spheroidal functions. Bell System Tech. J. 43, pp. 3009–3057.
  • C. Snow (1952) Hypergeometric and Legendre Functions with Applications to Integral Equations of Potential Theory. National Bureau of Standards Applied Mathematics Series, No. 19, U. S. Government Printing Office, Washington, D.C..
  • K. Srinivasa Rao (1981) Computation of angular momentum coefficients using sets of generalized hypergeometric functions. Comput. Phys. Comm. 22 (2-3), pp. 297–302.
  • 17: Bibliography M
  • N. Michel and M. V. Stoitsov (2008) Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl-Teller-Ginocchio potential wave functions. Comput. Phys. Comm. 178 (7), pp. 535–551.
  • C. Micu and E. Papp (2005) Applying q -Laguerre polynomials to the derivation of q -deformed energies of oscillator and Coulomb systems. Romanian Reports in Physics 57 (1), pp. 25–34.
  • A. R. Miller and R. B. Paris (2011) Euler-type transformations for the generalized hypergeometric function F r + 1 r + 2 ( x ) . Z. Angew. Math. Phys. 62 (1), pp. 31–45.
  • A. R. Miller (1997) A class of generalized hypergeometric summations. J. Comput. Appl. Math. 87 (1), pp. 79–85.
  • A. R. Miller (2003) On a Kummer-type transformation for the generalized hypergeometric function F 2 2 . J. Comput. Appl. Math. 157 (2), pp. 507–509.
  • 18: 14.13 Trigonometric Expansions
    §14.13 Trigonometric Expansions
    14.13.1 𝖯 ν μ ( cos θ ) = 2 μ + 1 ( sin θ ) μ π 1 / 2 k = 0 Γ ( ν + μ + k + 1 ) Γ ( ν + k + 3 2 ) ( μ + 1 2 ) k k ! sin ( ( ν + μ + 2 k + 1 ) θ ) ,
    14.13.2 𝖰 ν μ ( cos θ ) = π 1 / 2 2 μ ( sin θ ) μ k = 0 Γ ( ν + μ + k + 1 ) Γ ( ν + k + 3 2 ) ( μ + 1 2 ) k k ! cos ( ( ν + μ + 2 k + 1 ) θ ) .
    14.13.3 𝖯 n ( cos θ ) = 2 2 n + 2 ( n ! ) 2 π ( 2 n + 1 ) ! k = 0 1 3 ( 2 k 1 ) k ! ( n + 1 ) ( n + 2 ) ( n + k ) ( 2 n + 3 ) ( 2 n + 5 ) ( 2 n + 2 k + 1 ) sin ( ( n + 2 k + 1 ) θ ) ,
    14.13.4 𝖰 n ( cos θ ) = 2 2 n + 1 ( n ! ) 2 ( 2 n + 1 ) ! k = 0 1 3 ( 2 k 1 ) k ! ( n + 1 ) ( n + 2 ) ( n + k ) ( 2 n + 3 ) ( 2 n + 5 ) ( 2 n + 2 k + 1 ) cos ( ( n + 2 k + 1 ) θ ) ,
    19: Bibliography D
  • C. de Boor (2001) A Practical Guide to Splines. Revised edition, Applied Mathematical Sciences, Vol. 27, Springer-Verlag, New York.
  • K. Dilcher, L. Skula, and I. Sh. Slavutskiǐ (1991) Bernoulli Numbers. Bibliography (1713–1990). Queen’s Papers in Pure and Applied Mathematics, Vol. 87, Queen’s University, Kingston, ON.
  • K. Dilcher (1987b) Irreducibility of certain generalized Bernoulli polynomials belonging to quadratic residue class characters. J. Number Theory 25 (1), pp. 72–80.
  • K. Dilcher (2002) Bernoulli Numbers and Confluent Hypergeometric Functions. In Number Theory for the Millennium, I (Urbana, IL, 2000), pp. 343–363.
  • T. M. Dunster (2014) Olver’s error bound methods applied to linear ordinary differential equations having a simple turning point. Anal. Appl. (Singap.) 12 (4), pp. 385–402.
  • 20: 14.21 Definitions and Basic Properties
    P ν ± μ ( z ) and 𝑸 ν μ ( z ) exist for all values of ν , μ , and z , except possibly z = ± 1 and , which are branch points (or poles) of the functions, in general. … …
    §14.21(iii) Properties
    This includes, for example, the Wronskian relations (14.2.7)–(14.2.11); hypergeometric representations (14.3.6)–(14.3.10) and (14.3.15)–(14.3.20); results for integer orders (14.6.3)–(14.6.5), (14.6.7), (14.6.8), (14.7.6), (14.7.7), and (14.7.11)–(14.7.16); behavior at singularities (14.8.7)–(14.8.16); connection formulas (14.9.11)–(14.9.16); recurrence relations (14.10.3)–(14.10.7). The generating function expansions (14.7.19) (with 𝖯 replaced by P ) and (14.7.22) apply when | h | < min | z ± ( z 2 1 ) 1 / 2 | ; (14.7.21) (with 𝖯 replaced by P ) applies when | h | > max | z ± ( z 2 1 ) 1 / 2 | .