About the Project

Whittaker%E2%80%93Hill%20equation

AdvancedHelp

(0.003 seconds)

11—20 of 549 matching pages

11: 28.20 Definitions and Basic Properties
§28.20(i) Modified Mathieu’s Equation
When z is replaced by ± i z , (28.2.1) becomes the modified Mathieu’s equation:
28.20.1 w ′′ ( a 2 q cosh ( 2 z ) ) w = 0 ,
28.20.2 ( ζ 2 1 ) w ′′ + ζ w + ( 4 q ζ 2 2 q a ) w = 0 , ζ = cosh z .
Then from §2.7(ii) it is seen that equation (28.20.2) has independent and unique solutions that are asymptotic to ζ 1 / 2 e ± 2 i h ζ as ζ in the respective sectors | ph ( i ζ ) | 3 2 π δ , δ being an arbitrary small positive constant. …
12: 13.28 Physical Applications
§13.28(i) Exact Solutions of the Wave Equation
The reduced wave equation 2 w = k 2 w in paraboloidal coordinates, x = 2 ξ η cos ϕ , y = 2 ξ η sin ϕ , z = ξ η , can be solved via separation of variables w = f 1 ( ξ ) f 2 ( η ) e i p ϕ , where …and V κ , μ ( j ) ( z ) , j = 1 , 2 , denotes any pair of solutions of Whittaker’s equation (13.14.1). …
§13.28(ii) Coulomb Functions
13: 13.25 Products
§13.25 Products
13.25.1 M κ , μ ( z ) M κ , μ 1 ( z ) + ( 1 2 + μ + κ ) ( 1 2 + μ κ ) 4 μ ( 1 + μ ) ( 1 + 2 μ ) 2 M κ , μ + 1 ( z ) M κ , μ ( z ) = 1 .
For integral representations, integrals, and series containing products of M κ , μ ( z ) and W κ , μ ( z ) see Erdélyi et al. (1953a, §6.15.3).
14: 13.20 Uniform Asymptotic Approximations for Large μ
§13.20(i) Large μ , Fixed κ
Equations (13.20.17) and (13.20.18) are simpler than (6. … … For uniform approximations of M κ , i μ ( z ) and W κ , i μ ( z ) , κ and μ real, one or both large, see Dunster (2003a).
15: 23 Weierstrass Elliptic and Modular
Functions
16: 13.15 Recurrence Relations and Derivatives
§13.15(i) Recurrence Relations
13.15.1 ( κ μ 1 2 ) M κ 1 , μ ( z ) + ( z 2 κ ) M κ , μ ( z ) + ( κ + μ + 1 2 ) M κ + 1 , μ ( z ) = 0 ,
13.15.2 2 μ ( 1 + 2 μ ) z M κ 1 2 , μ 1 2 ( z ) ( z + 2 μ ) ( 1 + 2 μ ) M κ , μ ( z ) + ( κ + μ + 1 2 ) z M κ + 1 2 , μ + 1 2 ( z ) = 0 ,
13.15.3 ( κ μ 1 2 ) M κ 1 2 , μ + 1 2 ( z ) + ( 1 + 2 μ ) z M κ , μ ( z ) ( κ + μ + 1 2 ) M κ + 1 2 , μ + 1 2 ( z ) = 0 ,
§13.15(ii) Differentiation Formulas
17: Bibliography D
  • K. Dilcher (1987b) Irreducibility of certain generalized Bernoulli polynomials belonging to quadratic residue class characters. J. Number Theory 25 (1), pp. 72–80.
  • B. A. Dubrovin (1981) Theta functions and non-linear equations. Uspekhi Mat. Nauk 36 (2(218)), pp. 11–80 (Russian).
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • T. M. Dunster (1997) Error analysis in a uniform asymptotic expansion for the generalised exponential integral. J. Comput. Appl. Math. 80 (1), pp. 127–161.
  • T. M. Dunster (2003a) Uniform asymptotic approximations for the Whittaker functions M κ , i μ ( z ) and W κ , i μ ( z ) . Anal. Appl. (Singap.) 1 (2), pp. 199–212.
  • 18: 20 Theta Functions
    Chapter 20 Theta Functions
    19: Bibliography
  • D. E. Amos, S. L. Daniel, and M. K. Weston (1977) Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions I ν ( x ) and J ν ( x ) , x 0 , ν 0 . ACM Trans. Math. Software 3 (1), pp. 93–95.
  • D. E. Amos (1990) Algorithm 683: A portable FORTRAN subroutine for exponential integrals of a complex argument. ACM Trans. Math. Software 16 (2), pp. 178–182.
  • G. E. Andrews, R. Askey, and R. Roy (1999) Special Functions. Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge.
  • F. M. Arscott (1967) The Whittaker-Hill equation and the wave equation in paraboloidal co-ordinates. Proc. Roy. Soc. Edinburgh Sect. A 67, pp. 265–276.
  • M. J. Atia, A. Martínez-Finkelshtein, P. Martínez-González, and F. Thabet (2014) Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters. J. Math. Anal. Appl. 416 (1), pp. 52–80.
  • 20: 13.26 Addition and Multiplication Theorems
    §13.26(i) Addition Theorems for M κ , μ ( z )
    The function M κ , μ ( x + y ) has the following expansions: …
    §13.26(ii) Addition Theorems for W κ , μ ( z )
    The function W κ , μ ( x + y ) has the following expansions: …
    §13.26(iii) Multiplication Theorems for M κ , μ ( z ) and W κ , μ ( z )