About the Project

Watson sum

AdvancedHelp

(0.001 seconds)

11—20 of 56 matching pages

11: 7.12 Asymptotic Expansions
erfc z e z 2 π m = 0 ( 1 ) m ( 1 2 ) m z 2 m + 1 ,
7.12.2 f ( z ) 1 π z m = 0 ( 1 ) m ( 1 2 ) 2 m ( π z 2 / 2 ) 2 m ,
7.12.3 g ( z ) 1 π z m = 0 ( 1 ) m ( 1 2 ) 2 m + 1 ( π z 2 / 2 ) 2 m + 1 ,
7.12.4 f ( z ) = 1 π z m = 0 n 1 ( 1 ) m ( 1 2 ) 2 m ( π z 2 / 2 ) 2 m + R n ( f ) ( z ) ,
7.12.5 g ( z ) = 1 π z m = 0 n 1 ( 1 ) m ( 1 2 ) 2 m + 1 ( π z 2 / 2 ) 2 m + 1 , + R n ( g ) ( z ) ,
12: 10.60 Sums
§10.60 Sums
§10.60(i) Addition Theorems
§10.60(ii) Duplication Formulas
§10.60(iv) Compendia
See also Watson (1944, Chapters 11 and 16).
13: 10.40 Asymptotic Expansions for Large Argument
10.40.5 I ν ( z ) e z ( 2 π z ) 1 2 k = 0 ( 1 ) k a k ( ν ) z k ± i e ± ν π i e z ( 2 π z ) 1 2 k = 0 a k ( ν ) z k , 1 2 π + δ ± ph z 3 2 π δ .
In the expansion (10.40.2) assume that z > 0 and the sum is truncated when k = 1 . …
14: 2.3 Integrals of a Real Variable
§2.3(ii) Watson’s Lemma
(In other words, differentiation of (2.3.8) with respect to the parameter λ (or μ ) is legitimate.) … Watson’s lemma can be regarded as a special case of this result. For error bounds for Watson’s lemma and Laplace’s method see Boyd (1993) and Olver (1997b, Chapter 3). … The first result is the analog of Watson’s lemma (§2.3(ii)). …
15: 2.6 Distributional Methods
Motivated by Watson’s lemma (§2.3(ii)), we substitute (2.6.2) in (2.6.1), and integrate term by term. …
2.6.41 f = s = 0 n 1 a s t s α s = 1 n c s δ ( s 1 ) + f n ,
Since the function t μ ( ln t γ ψ ( μ + 1 ) ) and all its derivatives are locally absolutely continuous in ( 0 , ) , the distributional derivatives in the first sum in (2.6.44) can be replaced by the corresponding ordinary derivatives. …when α = 1 , where …
2.6.57 f ( t ) h ( x t ) = j = 0 n 1 k = 0 n 1 a j b k t j + α 1 k β x k β + j = 0 n 1 a j t j + α 1 h n ( x t ) + k = 0 n 1 b k x k β t k β f n ( t ) + f n ( t ) h n ( x t ) .
16: 1.3 Determinants, Linear Operators, and Spectral Expansions
1.3.4 det [ a j k ] = = 1 n a j A j .
1.3.9 det [ a j k ] 2 ( k = 1 n a 1 k 2 ) ( k = 1 n a 2 k 2 ) ( k = 1 n a n k 2 ) .
for every distinct pair of j , k , or when one of the factors k = 1 n a j k 2 vanishes. …
1.3.19 j , k = | a j , k δ j , k |
For further information see Whittaker and Watson (1927, pp. 36–40) and Magnus and Winkler (1966, §2.3). …
17: 10.17 Asymptotic Expansions for Large Argument
10.17.3 J ν ( z ) ( 2 π z ) 1 2 ( cos ω k = 0 ( 1 ) k a 2 k ( ν ) z 2 k sin ω k = 0 ( 1 ) k a 2 k + 1 ( ν ) z 2 k + 1 ) , | ph z | π δ ,
10.17.4 Y ν ( z ) ( 2 π z ) 1 2 ( sin ω k = 0 ( 1 ) k a 2 k ( ν ) z 2 k + cos ω k = 0 ( 1 ) k a 2 k + 1 ( ν ) z 2 k + 1 ) , | ph z | π δ ,
10.17.9 J ν ( z ) ( 2 π z ) 1 2 ( sin ω k = 0 ( 1 ) k b 2 k ( ν ) z 2 k + cos ω k = 0 ( 1 ) k b 2 k + 1 ( ν ) z 2 k + 1 ) , | ph z | π δ ,
Then the remainder associated with the sum k = 0 1 ( 1 ) k a 2 k ( ν ) z 2 k does not exceed the first neglected term in absolute value and has the same sign provided that max ( 1 2 ν 1 4 , 1 ) . Similarly for k = 0 1 ( 1 ) k a 2 k + 1 ( ν ) z 2 k 1 , provided that max ( 1 2 ν 3 4 , 1 ) . …
18: 10.12 Generating Function and Associated Series
10.12.1 e 1 2 z ( t t 1 ) = m = t m J m ( z ) .
cos ( z sin θ ) = J 0 ( z ) + 2 k = 1 J 2 k ( z ) cos ( 2 k θ ) ,
sin ( z sin θ ) = 2 k = 0 J 2 k + 1 ( z ) sin ( ( 2 k + 1 ) θ ) ,
cos ( z cos θ ) = J 0 ( z ) + 2 k = 1 ( 1 ) k J 2 k ( z ) cos ( 2 k θ ) ,
sin ( z cos θ ) = 2 k = 0 ( 1 ) k J 2 k + 1 ( z ) cos ( ( 2 k + 1 ) θ ) .
19: 11.9 Lommel Functions
11.9.3 s μ , ν ( z ) = z μ + 1 k = 0 ( 1 ) k z 2 k a k + 1 ( μ , ν ) ,
For the foregoing results and further information see Watson (1944, §§10.7–10.73) and Babister (1967, §3.16). …
11.9.7 s μ , ν ( z ) = 2 μ + 1 k = 0 ( 2 k + μ + 1 ) Γ ( k + μ + 1 ) k ! ( 2 k + μ ν + 1 ) ( 2 k + μ + ν + 1 ) J 2 k + μ + 1 ( z ) ,
11.9.8 s μ , ν ( z ) = 2 ( μ + ν 1 ) / 2 Γ ( 1 2 μ + 1 2 ν + 1 2 ) z ( μ + 1 ν ) / 2 k = 0 ( 1 2 z ) k k ! ( 2 k + μ ν + 1 ) J k + 1 2 ( μ + ν + 1 ) ( z ) .
For further information on Lommel functions see Watson (1944, §§10.7–10.75) and Babister (1967, Chapter 3). …
20: 20.2 Definitions and Periodic Properties
20.2.1 θ 1 ( z | τ ) = θ 1 ( z , q ) = 2 n = 0 ( 1 ) n q ( n + 1 2 ) 2 sin ( ( 2 n + 1 ) z ) ,
20.2.2 θ 2 ( z | τ ) = θ 2 ( z , q ) = 2 n = 0 q ( n + 1 2 ) 2 cos ( ( 2 n + 1 ) z ) ,
20.2.3 θ 3 ( z | τ ) = θ 3 ( z , q ) = 1 + 2 n = 1 q n 2 cos ( 2 n z ) ,
20.2.4 θ 4 ( z | τ ) = θ 4 ( z , q ) = 1 + 2 n = 1 ( 1 ) n q n 2 cos ( 2 n z ) .