About the Project

SL(2,Z)

AdvancedHelp

(0.004 seconds)

31—40 of 803 matching pages

31: 35.7 Gaussian Hypergeometric Function of Matrix Argument
β–Ί β–Ί
Case m = 2
β–Ί
35.7.3 F 1 2 ⁑ ( a , b c ; [ t 1 0 0 t 2 ] ) = k = 0 ( a ) k ⁒ ( c a ) k ⁒ ( b ) k ⁒ ( c b ) k k ! ⁒ ( c ) 2 ⁒ k ⁒ ( c 1 2 ) k ⁒ ( t 1 ⁒ t 2 ) k ⁒ F 1 2 ⁑ ( a + k , b + k c + 2 ⁒ k ; t 1 + t 2 t 1 ⁒ t 2 ) .
β–ΊSubject to the conditions (a)–(c), the function f ⁑ ( 𝐓 ) = F 1 2 ⁑ ( a , b ; c ; 𝐓 ) is the unique solution of each partial differential equation β–Ί
35.7.9 t j ⁒ ( 1 t j ) ⁒ 2 F t j 2 1 2 ⁒ k = 1 k j m t k ⁒ ( 1 t k ) t j t k ⁒ F t k + ( c 1 2 ⁒ ( m 1 ) ( a + b 1 2 ⁒ ( m 3 ) ) ⁒ t j + 1 2 ⁒ k = 1 k j m t j ⁒ ( 1 t j ) t j t k ) ⁒ F t j = a ⁒ b ⁒ F ,
32: 2.4 Contour Integrals
β–ΊThen (2.4.1) is valid in any closed sector with vertex z = 0 and properly interior to Ξ± 2 1 2 ⁒ Ο€ < ph ⁑ z < Ξ± 1 + 1 2 ⁒ Ο€ . … β–Ί
  • (b)

    z ranges along a ray or over an annular sector ΞΈ 1 ΞΈ ΞΈ 2 , | z | Z , where ΞΈ = ph ⁑ z , ΞΈ 2 ΞΈ 1 < Ο€ , and Z > 0 . I ⁑ ( z ) converges at b absolutely and uniformly with respect to z .

  • β–ΊHigher coefficients b 2 ⁒ s in (2.4.15) can be found from (2.3.18) with Ξ» = 1 , ΞΌ = 2 , and s replaced by 2 ⁒ s . …The last reference also includes examples, as do Olver (1997b, Chapter 4), Wong (1989, Chapter 2), and Bleistein and Handelsman (1975, Chapter 7). … β–Ίwith a and b chosen so that the zeros of p ⁑ ( Ξ± , t ) / t correspond to the zeros w 1 ⁑ ( Ξ± ) , w 2 ⁑ ( Ξ± ) , say, of the quadratic w 2 + 2 ⁒ a ⁒ w + b . …
    33: 27.16 Cryptography
    β–ΊTo code a message by this method, we replace each letter by two digits, say A = 01 , B = 02 , , Z = 26 , and divide the message into pieces of convenient length smaller than the public value n = p ⁒ q . …
    34: Errata
    β–Ί
  • Equations (18.16.12), (18.16.13)
    18.16.12 ( n + 2 ) ⁒ x n , 1 ( n 1 n 2 + ( n + 2 ) ⁒ ( α + 1 ) ) 2 1
    18.16.13 ( n + 2 ) ⁒ x n , n ( n 1 + n 2 + ( n + 2 ) ⁒ ( α + 1 ) ) 2 1

    The presentation of these inequalities has been improved.

  • β–Ί
  • Subsections 10.6(i), 10.29(i)

    Sentences were added just below (10.6.5) and (10.29.3) regarding results on modified quotients of the form z ⁒ π’ž Ξ½ ± 1 ⁑ ( z ) / π’ž Ξ½ ⁑ ( z ) and z ⁒ 𝒡 Ξ½ ± 1 ⁑ ( z ) / 𝒡 Ξ½ ⁑ ( z ) , respectively (suggested by Art Ballato on 2021-04-29).

  • β–Ί
  • Equations (22.9.8), (22.9.9) and (22.9.10)
    22.9.8 s 1 , 3 ( 4 ) ⁒ s 2 , 3 ( 4 ) + s 2 , 3 ( 4 ) ⁒ s 3 , 3 ( 4 ) + s 3 , 3 ( 4 ) ⁒ s 1 , 3 ( 4 ) = κ 2 1 k 2
    22.9.9 c 1 , 3 ( 4 ) ⁒ c 2 , 3 ( 4 ) + c 2 , 3 ( 4 ) ⁒ c 3 , 3 ( 4 ) + c 3 , 3 ( 4 ) ⁒ c 1 , 3 ( 4 ) = κ ⁒ ( κ + 2 ) ( 1 + κ ) 2
    22.9.10 d 1 , 3 ( 2 ) ⁒ d 2 , 3 ( 2 ) + d 2 , 3 ( 2 ) ⁒ d 3 , 3 ( 2 ) + d 3 , 3 ( 2 ) ⁒ d 1 , 3 ( 2 ) = d 1 , 3 ( 4 ) ⁒ d 2 , 3 ( 4 ) + d 2 , 3 ( 4 ) ⁒ d 3 , 3 ( 4 ) + d 3 , 3 ( 4 ) ⁒ d 1 , 3 ( 4 ) = κ ⁒ ( κ + 2 )

    Originally all the functions s m , p ( 4 ) , c m , p ( 4 ) , d m , p ( 2 ) and d m , p ( 4 ) in Equations (22.9.8), (22.9.9) and (22.9.10) were written incorrectly with p = 2 . These functions have been corrected so that they are written with p = 3 . In the sentence just below (22.9.10), the expression s m , 2 ( 4 ) ⁒ s n , 2 ( 4 ) has been corrected to read s m , p ( 4 ) ⁒ s n , p ( 4 ) .

    Reported by Juan Miguel Nieto on 2019-11-07

  • β–Ί
  • Equations (28.28.21) and (28.28.22)
    28.28.21 4 Ο€ ⁒ 0 Ο€ / 2 π’ž 2 ⁒ β„“ + 1 ( j ) ⁒ ( 2 ⁒ h ⁒ R ) ⁒ cos ⁑ ( ( 2 ⁒ β„“ + 1 ) ⁒ Ο• ) ⁒ ce 2 ⁒ m + 1 ⁑ ( t , h 2 ) ⁒ d t = ( 1 ) β„“ + m ⁒ A 2 ⁒ β„“ + 1 2 ⁒ m + 1 ⁒ ( h 2 ) ⁒ Mc 2 ⁒ m + 1 ( j ) ⁑ ( z , h )
    28.28.22 4 Ο€ ⁒ 0 Ο€ / 2 π’ž 2 ⁒ β„“ + 1 ( j ) ⁒ ( 2 ⁒ h ⁒ R ) ⁒ sin ⁑ ( ( 2 ⁒ β„“ + 1 ) ⁒ Ο• ) ⁒ se 2 ⁒ m + 1 ⁑ ( t , h 2 ) ⁒ d t = ( 1 ) β„“ + m ⁒ B 2 ⁒ β„“ + 1 2 ⁒ m + 1 ⁒ ( h 2 ) ⁒ Ms 2 ⁒ m + 1 ( j ) ⁑ ( z , h ) ,

    Originally the prefactor 4 Ο€ and upper limit of integration Ο€ / 2 in these two equations were given incorrectly as 2 Ο€ and Ο€ .

    Reported 2015-05-20 by Ruslan Kabasayev

  • β–Ί
  • Equation (22.6.7)
    22.6.7 dn ⁑ ( 2 ⁒ z , k ) = dn 2 ⁑ ( z , k ) k 2 ⁒ sn 2 ⁑ ( z , k ) ⁒ cn 2 ⁑ ( z , k ) 1 k 2 ⁒ sn 4 ⁑ ( z , k ) = dn 4 ⁑ ( z , k ) + k 2 ⁒ k 2 ⁒ sn 4 ⁑ ( z , k ) 1 k 2 ⁒ sn 4 ⁑ ( z , k )

    Originally the term k 2 ⁒ sn 2 ⁑ ( z , k ) ⁒ cn 2 ⁑ ( z , k ) was given incorrectly as k 2 ⁒ sn 2 ⁑ ( z , k ) ⁒ dn 2 ⁑ ( z , k ) .

    Reported 2014-02-28 by Svante Janson.

  • 35: 4.17 Special Values and Limits
    β–Ί
    Table 4.17.1: Trigonometric functions: values at multiples of 1 12 ⁒ Ο€ .
    β–Ί β–Ίβ–Ίβ–Ίβ–Ίβ–Ίβ–Ί
    θ sin ⁑ θ cos ⁑ θ tan ⁑ θ csc ⁑ θ sec ⁑ θ cot ⁑ θ
    Ο€ / 12 1 4 ⁒ 2 ⁒ ( 3 1 ) 1 4 ⁒ 2 ⁒ ( 3 + 1 ) 2 3 2 ⁒ ( 3 + 1 ) 2 ⁒ ( 3 1 ) 2 + 3
    Ο€ / 4 1 2 ⁒ 2 1 2 ⁒ 2 1 2 2 1
    2 ⁒ Ο€ / 3 1 2 ⁒ 3 1 2 3 2 3 ⁒ 3 2 1 3 ⁒ 3
    3 ⁒ Ο€ / 4 1 2 ⁒ 2 1 2 ⁒ 2 1 2 2 1
    β–Ί
    β–Ί
    4.17.3 lim z 0 1 cos ⁑ z z 2 = 1 2 .
    36: 34.5 Basic Properties: 6 ⁒ j Symbol
    β–ΊIf any lower argument in a 6 ⁒ j symbol is 0 , 1 2 , or 1 , then the 6 ⁒ j symbol has a simple algebraic form. … β–Ί
    34.5.5 { j 1 j 2 j 3 1 j 3 1 j 2 } = ( 1 ) J ⁒ ( 2 ⁒ ( J + 1 ) ⁒ ( J 2 ⁒ j 1 ) ⁒ ( J 2 ⁒ j 2 ) ⁒ ( J 2 ⁒ j 3 + 1 ) 2 ⁒ j 2 ⁒ ( 2 ⁒ j 2 + 1 ) ⁒ ( 2 ⁒ j 2 + 2 ) ⁒ ( 2 ⁒ j 3 1 ) ⁒ 2 ⁒ j 3 ⁒ ( 2 ⁒ j 3 + 1 ) ) 1 2 ,
    β–Ί
    34.5.6 { j 1 j 2 j 3 1 j 3 1 j 2 + 1 } = ( 1 ) J ⁒ ( ( J 2 ⁒ j 2 1 ) ⁒ ( J 2 ⁒ j 2 ) ⁒ ( J 2 ⁒ j 3 + 1 ) ⁒ ( J 2 ⁒ j 3 + 2 ) ( 2 ⁒ j 2 + 1 ) ⁒ ( 2 ⁒ j 2 + 2 ) ⁒ ( 2 ⁒ j 2 + 3 ) ⁒ ( 2 ⁒ j 3 1 ) ⁒ 2 ⁒ j 3 ⁒ ( 2 ⁒ j 3 + 1 ) ) 1 2 ,
    β–Ί
    34.5.7 { j 1 j 2 j 3 1 j 3 j 2 } = ( 1 ) J + 1 ⁒ 2 ⁒ ( j 2 ⁒ ( j 2 + 1 ) + j 3 ⁒ ( j 3 + 1 ) j 1 ⁒ ( j 1 + 1 ) ) ( 2 ⁒ j 2 ⁒ ( 2 ⁒ j 2 + 1 ) ⁒ ( 2 ⁒ j 2 + 2 ) ⁒ 2 ⁒ j 3 ⁒ ( 2 ⁒ j 3 + 1 ) ⁒ ( 2 ⁒ j 3 + 2 ) ) 1 2 .
    β–Ί
    34.5.13 E ⁑ ( j ) = ( ( j 2 ( j 2 j 3 ) 2 ) ⁒ ( ( j 2 + j 3 + 1 ) 2 j 2 ) ⁒ ( j 2 ( l 2 l 3 ) 2 ) ⁒ ( ( l 2 + l 3 + 1 ) 2 j 2 ) ) 1 2 .
    37: 29.1 Special Notation
    β–ΊThe main functions treated in this chapter are the eigenvalues a Ξ½ 2 ⁒ m ⁑ ( k 2 ) , a Ξ½ 2 ⁒ m + 1 ⁑ ( k 2 ) , b Ξ½ 2 ⁒ m + 1 ⁑ ( k 2 ) , b Ξ½ 2 ⁒ m + 2 ⁑ ( k 2 ) , the Lamé functions 𝐸𝑐 Ξ½ 2 ⁒ m ⁑ ( z , k 2 ) , 𝐸𝑐 Ξ½ 2 ⁒ m + 1 ⁑ ( z , k 2 ) , 𝐸𝑠 Ξ½ 2 ⁒ m + 1 ⁑ ( z , k 2 ) , 𝐸𝑠 Ξ½ 2 ⁒ m + 2 ⁑ ( z , k 2 ) , and the Lamé polynomials 𝑒𝐸 2 ⁒ n m ⁑ ( z , k 2 ) , 𝑠𝐸 2 ⁒ n + 1 m ⁑ ( z , k 2 ) , 𝑐𝐸 2 ⁒ n + 1 m ⁑ ( z , k 2 ) , 𝑑𝐸 2 ⁒ n + 1 m ⁑ ( z , k 2 ) , 𝑠𝑐𝐸 2 ⁒ n + 2 m ⁑ ( z , k 2 ) , 𝑠𝑑𝐸 2 ⁒ n + 2 m ⁑ ( z , k 2 ) , 𝑐𝑑𝐸 2 ⁒ n + 2 m ⁑ ( z , k 2 ) , 𝑠𝑐𝑑𝐸 2 ⁒ n + 3 m ⁑ ( z , k 2 ) . … β–ΊOther notations that have been used are as follows: Ince (1940a) interchanges a Ξ½ 2 ⁒ m + 1 ⁑ ( k 2 ) with b Ξ½ 2 ⁒ m + 1 ⁑ ( k 2 ) . The relation to the Lamé functions L c ⁒ Ξ½ ( m ) , L s ⁒ Ξ½ ( m ) of Jansen (1977) is given by … β–Ί
    𝐸𝑠 Ξ½ 2 ⁒ m + 2 ⁑ ( z , k 2 ) = s Ξ½ 2 ⁒ m + 2 ⁑ ( k 2 ) ⁒ Es Ξ½ 2 ⁒ m + 2 ⁑ ( z , k 2 ) ,
    β–Ίwhere the positive factors c Ξ½ m ⁑ ( k 2 ) and s Ξ½ m ⁑ ( k 2 ) are determined by …
    38: 4.30 Elementary Properties
    β–Ί
    Table 4.30.1: Hyperbolic functions: interrelations. …
    β–Ί β–Ίβ–Ίβ–Ίβ–Ίβ–Ίβ–Ίβ–Ί
    sinh ⁑ θ = a cosh ⁑ θ = a tanh ⁑ θ = a csch ⁑ θ = a sech ⁑ θ = a coth ⁑ θ = a
    sinh ⁑ θ a ( a 2 1 ) 1 / 2 a ⁒ ( 1 a 2 ) 1 / 2 a 1 a 1 ⁒ ( 1 a 2 ) 1 / 2 ( a 2 1 ) 1 / 2
    cosh ⁑ θ ( 1 + a 2 ) 1 / 2 a ( 1 a 2 ) 1 / 2 a 1 ⁒ ( 1 + a 2 ) 1 / 2 a 1 a ⁒ ( a 2 1 ) 1 / 2
    tanh ⁑ θ a ⁒ ( 1 + a 2 ) 1 / 2 a 1 ⁒ ( a 2 1 ) 1 / 2 a ( 1 + a 2 ) 1 / 2 ( 1 a 2 ) 1 / 2 a 1
    csch ⁑ θ a 1 ( a 2 1 ) 1 / 2 a 1 ⁒ ( 1 a 2 ) 1 / 2 a a ⁒ ( 1 a 2 ) 1 / 2 ( a 2 1 ) 1 / 2
    sech ⁑ θ ( 1 + a 2 ) 1 / 2 a 1 ( 1 a 2 ) 1 / 2 a ⁒ ( 1 + a 2 ) 1 / 2 a a 1 ⁒ ( a 2 1 ) 1 / 2
    β–Ί
    39: 29.15 Fourier Series and Chebyshev Series
    β–Ί
    Polynomial 𝑒𝐸 2 ⁒ n m ⁑ ( z , k 2 )
    β–Ί
    Polynomial 𝑠𝐸 2 ⁒ n + 1 m ⁑ ( z , k 2 )
    β–Ί
    Polynomial 𝑠𝑐𝐸 2 ⁒ n + 2 m ⁑ ( z , k 2 )
    β–Ί
    Polynomial 𝑠𝑑𝐸 2 ⁒ n + 2 m ⁑ ( z , k 2 )
    β–Ί
    Polynomial 𝑐𝑑𝐸 2 ⁒ n + 2 m ⁑ ( z , k 2 )
    40: 22.9 Cyclic Identities
    β–Ί
    §22.9(ii) Typical Identities of Rank 2
    β–ΊThese identities are cyclic in the sense that each of the indices m , n in the first product of, for example, the form s m , p ( 4 ) ⁒ s n , p ( 4 ) are simultaneously permuted in the cyclic order: m m + 1 m + 2 β‹― ⁒ p 1 2 β‹― ⁒ m 1 ; n n + 1 n + 2 β‹― ⁒ p 1 2 β‹― ⁒ n 1 . … β–Ί
    22.9.11 ( d 1 , 2 ( 2 ) ) 2 ⁒ d 2 , 2 ( 2 ) ± ( d 2 , 2 ( 2 ) ) 2 ⁒ d 1 , 2 ( 2 ) = k ⁒ ( d 1 , 2 ( 2 ) ± d 2 , 2 ( 2 ) ) ,
    β–Ί
    22.9.12 c 1 , 2 ( 2 ) ⁒ s 1 , 2 ( 2 ) ⁒ d 2 , 2 ( 2 ) + c 2 , 2 ( 2 ) ⁒ s 2 , 2 ( 2 ) ⁒ d 1 , 2 ( 2 ) = 0 .
    β–Ί
    22.9.21 k 2 ⁒ c 1 , 2 ( 2 ) ⁒ s 1 , 2 ( 2 ) ⁒ c 2 , 2 ( 2 ) ⁒ s 2 , 2 ( 2 ) = k ⁒ ( 1 ( s 1 , 2 ( 2 ) ) 2 ( s 2 , 2 ( 2 ) ) 2 ) .