About the Project

Riemann matrix

AdvancedHelp

(0.002 seconds)

1—10 of 25 matching pages

1: 21.10 Methods of Computation
§21.10(ii) Riemann Theta Functions Associated with a Riemann Surface
In addition to evaluating the Fourier series, the main problem here is to compute a Riemann matrix originating from a Riemann surface. …
2: 21.1 Special Notation
g , h positive integers.
𝛀 g × g complex, symmetric matrix with 𝛀 strictly positive definite, i.e., a Riemann matrix.
3: 21.4 Graphics
21.4.1 𝛀 = [ 1.69098 3006 + 0.95105 6516 i 1.5 + 0.36327 1264 i 1.5 + 0.36327 1264 i 1.30901 6994 + 0.95105 6516 i ] .
This Riemann matrix originates from the Riemann surface represented by the algebraic curve μ 3 λ 7 + 2 λ 3 μ = 0 ; compare §21.7(i). …
21.4.2 𝛀 1 = [ i 1 2 1 2 i ] ,
21.4.3 𝛀 2 = [ 1 2 + i 1 2 1 2 i 1 2 1 2 i 1 2 1 2 i i 0 1 2 1 2 i 0 i ] .
See accompanying text
Figure 21.4.5: The real part of a genus 3 scaled Riemann theta function: θ ^ ( x + i y , 0 , 0 | 𝛀 2 ) , 0 x 1 , 0 y 3 . This Riemann matrix originates from the genus 3 Riemann surface represented by the algebraic curve μ 3 + 2 μ λ 4 = 0 ; compare §21.7(i). Magnify 3D Help
4: 21.3 Symmetry and Quasi-Periodicity
21.3.1 θ ( 𝐳 | 𝛀 ) = θ ( 𝐳 | 𝛀 ) ,
21.3.2 θ ( 𝐳 + 𝐦 1 | 𝛀 ) = θ ( 𝐳 | 𝛀 ) ,
21.3.3 θ ( 𝐳 + 𝐦 1 + 𝛀 𝐦 2 | 𝛀 ) = e 2 π i ( 1 2 𝐦 2 𝛀 𝐦 2 + 𝐦 2 𝐳 ) θ ( 𝐳 | 𝛀 ) ,
21.3.4 θ [ 𝜶 + 𝐦 1 𝜷 + 𝐦 2 ] ( 𝐳 | 𝛀 ) = e 2 π i 𝜶 𝐦 2 θ [ 𝜶 𝜷 ] ( 𝐳 | 𝛀 ) .
21.3.6 θ [ 𝜶 𝜷 ] ( 𝐳 | 𝛀 ) = ( 1 ) 4 𝜶 𝜷 θ [ 𝜶 𝜷 ] ( 𝐳 | 𝛀 ) .
5: 21.5 Modular Transformations
21.5.4 θ ( [ [ 𝐂 𝛀 + 𝐃 ] 1 ] T 𝐳 | [ 𝐀 𝛀 + 𝐁 ] [ 𝐂 𝛀 + 𝐃 ] 1 ) = ξ ( 𝚪 ) det [ 𝐂 𝛀 + 𝐃 ] e π i 𝐳 [ [ 𝐂 𝛀 + 𝐃 ] 1 𝐂 ] 𝐳 θ ( 𝐳 | 𝛀 ) .
21.5.5 𝚪 = [ 𝐀 𝟎 g 𝟎 g [ 𝐀 1 ] T ] θ ( 𝐀 𝐳 | 𝐀 𝛀 𝐀 T ) = θ ( 𝐳 | 𝛀 ) .
21.5.6 𝚪 = [ 𝐈 g 𝐁 𝟎 g 𝐈 g ] θ ( 𝐳 | 𝛀 + 𝐁 ) = θ ( 𝐳 | 𝛀 ) .
21.5.7 𝚪 = [ 𝐈 g 𝐁 𝟎 g 𝐈 g ] θ ( 𝐳 | 𝛀 + 𝐁 ) = θ ( 𝐳 + 1 2 diag 𝐁 | 𝛀 ) .
21.5.9 θ [ 𝐃 𝜶 𝐂 𝜷 + 1 2 diag [ 𝐂 𝐃 T ] 𝐁 𝜶 + 𝐀 𝜷 + 1 2 diag [ 𝐀 𝐁 T ] ] ( [ [ 𝐂 𝛀 + 𝐃 ] 1 ] T 𝐳 | [ 𝐀 𝛀 + 𝐁 ] [ 𝐂 𝛀 + 𝐃 ] 1 ) = κ ( 𝜶 , 𝜷 , 𝚪 ) det [ 𝐂 𝛀 + 𝐃 ] e π i 𝐳 [ [ 𝐂 𝛀 + 𝐃 ] 1 𝐂 ] 𝐳 θ [ 𝜶 𝜷 ] ( 𝐳 | 𝛀 ) ,
6: 21.9 Integrable Equations
21.9.4 u ( x , y , t ) = c + 2 2 x 2 ln ( θ ( 𝐤 x + 𝐥 y + 𝝎 t + ϕ | 𝛀 ) ) ,
Furthermore, the solutions of the KP equation solve the Schottky problem: this is the question concerning conditions that a Riemann matrix needs to satisfy in order to be associated with a Riemann surface (Schottky (1903)). …
7: 21.6 Products
21.6.3 j = 1 h θ ( k = 1 h T j k 𝐳 k | 𝛀 ) = 1 𝒟 g 𝐀 𝒦 𝐁 𝒦 e 2 π i tr [ 1 2 𝐀 T 𝛀 𝐀 + 𝐀 T [ 𝐙 + 𝐁 ] ] j = 1 h θ ( 𝐳 j + 𝛀 𝐚 j + 𝐛 j | 𝛀 ) ,
21.6.4 j = 1 h θ [ k = 1 h T j k 𝐜 k k = 1 h T j k 𝐝 k ] ( k = 1 h T j k 𝐳 k | 𝛀 ) = 1 𝒟 g 𝐀 𝒦 𝐁 𝒦 e 2 π i j = 1 h 𝐛 j 𝐜 j j = 1 h θ [ 𝐚 j + 𝐜 j 𝐛 j + 𝐝 j ] ( 𝐳 j | 𝛀 ) ,
21.6.6 θ ( 𝐱 + 𝐲 + 𝐮 + 𝐯 2 | 𝛀 ) θ ( 𝐱 + 𝐲 𝐮 𝐯 2 | 𝛀 ) θ ( 𝐱 𝐲 + 𝐮 𝐯 2 | 𝛀 ) θ ( 𝐱 𝐲 𝐮 + 𝐯 2 | 𝛀 ) = 1 2 g 𝜶 1 2 g / g 𝜷 1 2 g / g e 2 π i ( 2 𝜶 𝛀 𝜶 + 𝜶 [ 𝐱 + 𝐲 + 𝐮 + 𝐯 ] ) θ ( 𝐱 + 𝛀 𝜶 + 𝜷 | 𝛀 ) θ ( 𝐲 + 𝛀 𝜶 + 𝜷 | 𝛀 ) θ ( 𝐮 + 𝛀 𝜶 + 𝜷 | 𝛀 ) θ ( 𝐯 + 𝛀 𝜶 + 𝜷 | 𝛀 ) ,
21.6.7 θ [ 1 2 [ 𝐜 1 + 𝐜 2 + 𝐜 3 + 𝐜 4 ] 1 2 [ 𝐝 1 + 𝐝 2 + 𝐝 3 + 𝐝 4 ] ] ( 𝐱 + 𝐲 + 𝐮 + 𝐯 2 | 𝛀 ) θ [ 1 2 [ 𝐜 1 + 𝐜 2 𝐜 3 𝐜 4 ] 1 2 [ 𝐝 1 + 𝐝 2 𝐝 3 𝐝 4 ] ] ( 𝐱 + 𝐲 𝐮 𝐯 2 | 𝛀 ) θ [ 1 2 [ 𝐜 1 𝐜 2 + 𝐜 3 𝐜 4 ] 1 2 [ 𝐝 1 𝐝 2 + 𝐝 3 𝐝 4 ] ] ( 𝐱 𝐲 + 𝐮 𝐯 2 | 𝛀 ) θ [ 1 2 [ 𝐜 1 𝐜 2 𝐜 3 + 𝐜 4 ] 1 2 [ 𝐝 1 𝐝 2 𝐝 3 + 𝐝 4 ] ] ( 𝐱 𝐲 𝐮 + 𝐯 2 | 𝛀 ) = 1 2 g 𝜶 1 2 g / g 𝜷 1 2 g / g e 2 π i 𝜷 [ 𝐜 1 + 𝐜 2 + 𝐜 3 + 𝐜 4 ] θ [ 𝐜 1 + 𝜶 𝐝 1 + 𝜷 ] ( 𝐱 | 𝛀 ) θ [ 𝐜 2 + 𝜶 𝐝 2 + 𝜷 ] ( 𝐲 | 𝛀 ) θ [ 𝐜 3 + 𝜶 𝐝 3 + 𝜷 ] ( 𝐮 | 𝛀 ) θ [ 𝐜 4 + 𝜶 𝐝 4 + 𝜷 ] ( 𝐯 | 𝛀 ) .
21.6.8 θ [ 𝜶 𝜸 ] ( 𝐳 1 | 𝛀 ) θ [ 𝜷 𝜹 ] ( 𝐳 2 | 𝛀 ) = 𝝂 g / ( 2 g ) θ [ 1 2 [ 𝜶 + 𝜷 + 𝝂 ] 𝜸 + 𝜹 ] ( 𝐳 1 + 𝐳 2 | 2 𝛀 ) θ [ 1 2 [ 𝜶 𝜷 + 𝝂 ] 𝜸 𝜹 ] ( 𝐳 1 𝐳 2 | 2 𝛀 ) .
8: 21.2 Definitions
21.2.1 θ ( 𝐳 | 𝛀 ) = 𝐧 g e 2 π i ( 1 2 𝐧 𝛀 𝐧 + 𝐧 𝐳 ) .
21.2.2 θ ^ ( 𝐳 | 𝛀 ) = e π [ 𝐳 ] [ 𝛀 ] 1 [ 𝐳 ] θ ( 𝐳 | 𝛀 ) .
21.2.5 θ [ 𝜶 𝜷 ] ( 𝐳 | 𝛀 ) = 𝐧 g e 2 π i ( 1 2 [ 𝐧 + 𝜶 ] 𝛀 [ 𝐧 + 𝜶 ] + [ 𝐧 + 𝜶 ] [ 𝐳 + 𝜷 ] ) .
21.2.6 θ [ 𝜶 𝜷 ] ( 𝐳 | 𝛀 ) = e 2 π i ( 1 2 𝜶 𝛀 𝜶 + 𝜶 [ 𝐳 + 𝜷 ] ) θ ( 𝐳 + 𝛀 𝜶 + 𝜷 | 𝛀 ) ,
21.2.7 θ [ 𝟎 𝟎 ] ( 𝐳 | 𝛀 ) = θ ( 𝐳 | 𝛀 ) .
9: 21.7 Riemann Surfaces
is a Riemann matrix and it is used to define the corresponding Riemann theta function. …
21.7.7 ( z 1 θ [ 𝜶 𝜷 ] ( 𝐳 | 𝛀 ) | 𝐳 = 𝟎 , , z g θ [ 𝜶 𝜷 ] ( 𝐳 | 𝛀 ) | 𝐳 = 𝟎 ) 𝟎 .
21.7.9 E ( P 1 , P 2 ) = θ [ 𝜶 𝜷 ] ( P 1 P 2 𝝎 | 𝛀 ) / ( ζ ( P 1 ) ζ ( P 2 ) ) ,
21.7.17 P j U k = 1 4 θ [ 𝜶 k + 𝜼 1 ( P j ) 𝜷 k + 𝜼 2 ( P j ) ] ( 𝐳 k | 𝛀 ) = P j U c k = 1 4 θ [ 𝜶 k + 𝜼 1 ( P j ) 𝜷 k + 𝜼 2 ( P j ) ] ( 𝐳 k | 𝛀 ) .
10: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions