About the Project

Riemann identity

AdvancedHelp

(0.001 seconds)

1—10 of 25 matching pages

1: 21.6 Products
§21.6(i) Riemann Identity
Then …This is the Riemann identity. On using theta functions with characteristics, it becomes …
2: 21.7 Riemann Surfaces
These special Riemann theta functions satisfy many special identities, two of which appear in the following subsections. …
§21.7(ii) Fay’s Trisecant Identity
§21.7(iii) Frobenius’ Identity
3: 25.10 Zeros
25.10.1 Z ( t ) exp ( i ϑ ( t ) ) ζ ( 1 2 + i t ) ,
4: Bibliography S
  • R. Sitaramachandrarao and B. Davis (1986) Some identities involving the Riemann zeta function. II. Indian J. Pure Appl. Math. 17 (10), pp. 1175–1186.
  • 5: 24.17 Mathematical Applications
    Bernoulli and Euler numbers and polynomials occur in: number theory via (24.4.7), (24.4.8), and other identities involving sums of powers; the Riemann zeta function and L -series (§25.15, Apostol (1976), and Ireland and Rosen (1990)); arithmetic of cyclotomic fields and the classical theory of Fermat’s last theorem (Ribenboim (1979) and Washington (1997)); p -adic analysis (Koblitz (1984, Chapter 2)). …
    6: 27.5 Inversion Formulas
    For example, the equation ζ ( s ) ( 1 / ζ ( s ) ) = 1 is equivalent to the identity
    7: 25.4 Reflection Formulas
    §25.4 Reflection Formulas
    25.4.1 ζ ( 1 s ) = 2 ( 2 π ) s cos ( 1 2 π s ) Γ ( s ) ζ ( s ) ,
    25.4.3 ξ ( s ) = ξ ( 1 s ) ,
    where ξ ( s ) is Riemann’s ξ -function, defined by:
    25.4.4 ξ ( s ) = 1 2 s ( s 1 ) Γ ( 1 2 s ) π s / 2 ζ ( s ) .
    8: 27.4 Euler Products and Dirichlet Series
    Every multiplicative f satisfies the identityThe completely multiplicative function f ( n ) = n s gives the Euler product representation of the Riemann zeta function ζ ( s ) 25.2(i)):
    27.4.3 ζ ( s ) = n = 1 n s = p ( 1 p s ) 1 , s > 1 .
    The Riemann zeta function is the prototype of series of the form …In (27.4.12) and (27.4.13) ζ ( s ) is the derivative of ζ ( s ) .
    9: 25.12 Polylogarithms
    25.12.1 Li 2 ( z ) n = 1 z n n 2 , | z | 1 .
    The special case z = 1 is the Riemann zeta function: ζ ( s ) = Li s ( 1 ) . …
    25.12.11 Li s ( z ) z Γ ( s ) 0 x s 1 e x z d x ,
    Further properties include
    25.12.12 Li s ( z ) = Γ ( 1 s ) ( ln 1 z ) s 1 + n = 0 ζ ( s n ) ( ln z ) n n ! , s 1 , 2 , 3 , , | ln z | < 2 π ,
    10: 25.13 Periodic Zeta Function
    25.13.1 F ( x , s ) n = 1 e 2 π i n x n s ,
    F ( x , s ) is periodic in x with period 1, and equals ζ ( s ) when x is an integer. …