About the Project

Olver hypergeometric function

AdvancedHelp

(0.012 seconds)

21—30 of 69 matching pages

21: 14.1 Special Notation
x , y , τ real variables.
𝐅 ( a , b ; c ; z ) Olver’s scaled hypergeometric function: F ( a , b ; c ; z ) / Γ ( c ) .
22: 14.23 Values on the Cut
14.23.3 𝑸 ν μ ( x ± i 0 ) = e ν π i / 2 π 3 / 2 ( 1 x 2 ) μ / 2 2 ν + 1 ( x 𝐅 ( 1 2 μ 1 2 ν + 1 2 , 1 2 ν + 1 2 μ + 1 ; 3 2 ; x 2 ) Γ ( 1 2 ν 1 2 μ + 1 2 ) Γ ( 1 2 ν + 1 2 μ + 1 2 ) i 𝐅 ( 1 2 μ 1 2 ν , 1 2 ν + 1 2 μ + 1 2 ; 1 2 ; x 2 ) Γ ( 1 2 ν 1 2 μ + 1 ) Γ ( 1 2 ν + 1 2 μ + 1 ) ) .
23: 10.16 Relations to Other Functions
10.16.10 J ν ( z ) = ( 1 2 z ) ν lim 𝐅 ( λ , μ ; ν + 1 ; z 2 / ( 4 λ μ ) ) ,
24: 16.2 Definition and Analytic Properties
16.2.5 𝐅 q p ( 𝐚 ; 𝐛 ; z ) = F q p ( a 1 , , a p b 1 , , b q ; z ) / ( Γ ( b 1 ) Γ ( b q ) ) = k = 0 ( a 1 ) k ( a p ) k Γ ( b 1 + k ) Γ ( b q + k ) z k k ! ;
25: 10.22 Integrals
10.22.49 0 t μ 1 e a t J ν ( b t ) d t = ( 1 2 b ) ν a μ + ν Γ ( μ + ν ) 𝐅 ( μ + ν 2 , μ + ν + 1 2 ; ν + 1 ; b 2 a 2 ) , ( μ + ν ) > 0 , ( a ± i b ) > 0 ,
10.22.50 0 t μ 1 e a t Y ν ( b t ) d t = cot ( ν π ) ( 1 2 b ) ν Γ ( μ + ν ) ( a 2 + b 2 ) 1 2 ( μ + ν ) 𝐅 ( μ + ν 2 , 1 μ + ν 2 ; ν + 1 ; b 2 a 2 + b 2 ) csc ( ν π ) ( 1 2 b ) ν Γ ( μ ν ) ( a 2 + b 2 ) 1 2 ( μ ν ) 𝐅 ( μ ν 2 , 1 μ ν 2 ; 1 ν ; b 2 a 2 + b 2 ) , μ > | ν | , ( a ± i b ) > 0 .
10.22.56 0 J μ ( a t ) J ν ( b t ) t λ d t = a μ Γ ( 1 2 ν + 1 2 μ 1 2 λ + 1 2 ) 2 λ b μ λ + 1 Γ ( 1 2 ν 1 2 μ + 1 2 λ + 1 2 ) 𝐅 ( 1 2 ( μ + ν λ + 1 ) , 1 2 ( μ ν λ + 1 ) ; μ + 1 ; a 2 b 2 ) , 0 < a < b , ( μ + ν + 1 ) > λ > 1 .
10.22.58 0 J ν ( a t ) J ν ( b t ) t λ d t = ( a b ) ν Γ ( ν 1 2 λ + 1 2 ) 2 λ ( a 2 + b 2 ) ν 1 2 λ + 1 2 Γ ( 1 2 λ + 1 2 ) 𝐅 ( 2 ν + 1 λ 4 , 2 ν + 3 λ 4 ; ν + 1 ; 4 a 2 b 2 ( a 2 + b 2 ) 2 ) , a b , ( 2 ν + 1 ) > λ > 1 .
10.22.64 0 J μ + 2 n + 1 ( a t ) J μ ( b t ) d t = { b μ Γ ( μ + n + 1 ) a μ + 1 n ! 𝐅 ( n , μ + n + 1 ; μ + 1 ; b 2 a 2 ) , 0 < b < a , ( 1 ) n / ( 2 a ) , b = a ( > 0 ) , 0 , 0 < a < b .
26: 13.8 Asymptotic Approximations for Large Parameters
13.8.12 𝐌 ( a , b , z ) ( z / a ) ( 1 b ) / 2 e z / 2 Γ ( 1 + a b ) Γ ( a ) ( I b 1 ( 2 a z ) s = 0 p s ( z ) a s z / a I b ( 2 a z ) s = 0 q s ( z ) a s ) ,
13.8.13 𝐌 ( a , b , z ) ( z / a ) ( 1 b ) / 2 e z / 2 Γ ( 1 + a ) Γ ( a + b ) ( J b 1 ( 2 a z ) s = 0 p s ( z ) ( a ) s z / a J b ( 2 a z ) s = 0 q s ( z ) ( a ) s ) ,
27: 10.43 Integrals
10.43.26 0 K μ ( a t ) J ν ( b t ) t λ d t = b ν Γ ( 1 2 ν 1 2 λ + 1 2 μ + 1 2 ) Γ ( 1 2 ν 1 2 λ 1 2 μ + 1 2 ) 2 λ + 1 a ν λ + 1 𝐅 ( ν λ + μ + 1 2 , ν λ μ + 1 2 ; ν + 1 ; b 2 a 2 ) , ( ν + 1 λ ) > | μ | , a > | b | .
28: 13.16 Integral Representations
13.16.9 W κ , μ ( z ) = e 1 2 z z κ + c 0 e z t t c 1 𝐅 1 2 ( 1 2 + μ κ , 1 2 μ κ c ; t ) d t , | ph z | < 1 2 π ,
29: 18.12 Generating Functions
18.12.2 𝐅 1 0 ( α + 1 ; ( x 1 ) z 2 ) 𝐅 1 0 ( β + 1 ; ( x + 1 ) z 2 ) = ( 1 2 ( 1 x ) z ) 1 2 α J α ( 2 ( 1 x ) z ) ( 1 2 ( 1 + x ) z ) 1 2 β I β ( 2 ( 1 + x ) z ) = n = 0 P n ( α , β ) ( x ) Γ ( n + α + 1 ) Γ ( n + β + 1 ) z n ,
30: Bibliography O
  • F. W. J. Olver (1991b) Uniform, exponentially improved, asymptotic expansions for the confluent hypergeometric function and other integral transforms. SIAM J. Math. Anal. 22 (5), pp. 1475–1489.
  • F. W. J. Olver (1993a) Exponentially-improved asymptotic solutions of ordinary differential equations I: The confluent hypergeometric function. SIAM J. Math. Anal. 24 (3), pp. 756–767.