About the Project

Olver%E2%80%99s

AdvancedHelp

(0.003 seconds)

11—20 of 655 matching pages

11: Bibliography O
  • A. B. Olde Daalhuis and F. W. J. Olver (1994) Exponentially improved asymptotic solutions of ordinary differential equations. II Irregular singularities of rank one. Proc. Roy. Soc. London Ser. A 445, pp. 39–56.
  • F. W. J. Olver (1962) Tables for Bessel Functions of Moderate or Large Orders. National Physical Laboratory Mathematical Tables, Vol. 6. Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London.
  • F. W. J. Olver (1964a) Error analysis of Miller’s recurrence algorithm. Math. Comp. 18 (85), pp. 65–74.
  • F. W. J. Olver (1993a) Exponentially-improved asymptotic solutions of ordinary differential equations I: The confluent hypergeometric function. SIAM J. Math. Anal. 24 (3), pp. 756–767.
  • S. Olver (2011) Numerical solution of Riemann-Hilbert problems: Painlevé II. Found. Comput. Math. 11 (2), pp. 153–179.
  • 12: 32.17 Methods of Computation
    For numerical studies of P II  see Rosales (1978), Miles (1978, 1980), Kashevarov (1998, 2004), and S.  Olver (2011). …
    13: 7 Error Functions, Dawson’s and Fresnel Integrals
    Chapter 7 Error Functions, Dawson’s and Fresnel Integrals
    14: 1 Algebraic and Analytic Methods
    … …
    15: 15.1 Special Notation
    16: Publications
  • D. W. Lozier, B. R. Miller and B. V. Saunders (1999) Design of a Digital Mathematical Library for Science, Technology and Education, Proceedings of the IEEE Forum on Research and Technology Advances in Digital Libraries (IEEE ADL ’99, Baltimore, Maryland, May 19, 1999). PDF
  • Q. Wang, B. V. Saunders and S. Ressler (2007) Dissemination of 3D Visualizations of Complex Function Data for the NIST Digital Library of Mathematical Functions, CODATA Data Science Journal 6 (2007), pp. S146–S154. PDF
  • R. Boisvert, C. W. Clark, D. Lozier and F. Olver (2011) A Special Functions Handbook for the Digital Age, Notices of the American Mathematical Society 58, 7 (2011), pp. 905–911. PDF
  • B. I. Schneider, B. R. Miller and B. V. Saunders (2018) NIST’s Digital Library of Mathematial Functions, Physics Today 71, 2, 48 (2018), pp. 48–53. PDF
  • 17: 9.2 Differential Equation
    §9.2(i) Airy’s Equation
    9.2.3 Ai ( 0 ) = 1 3 2 / 3 Γ ( 2 3 ) = 0.35502 80538 ,
    9.2.4 Ai ( 0 ) = 1 3 1 / 3 Γ ( 1 3 ) = 0.25881 94037 ,
    9.2.5 Bi ( 0 ) = 1 3 1 / 6 Γ ( 2 3 ) = 0.61492 66274 ,
    9.2.6 Bi ( 0 ) = 3 1 / 6 Γ ( 1 3 ) = 0.44828 83573 .
    18: 10.31 Power Series
    10.31.2 K 0 ( z ) = ( ln ( 1 2 z ) + γ ) I 0 ( z ) + 1 4 z 2 ( 1 ! ) 2 + ( 1 + 1 2 ) ( 1 4 z 2 ) 2 ( 2 ! ) 2 + ( 1 + 1 2 + 1 3 ) ( 1 4 z 2 ) 3 ( 3 ! ) 2 + .
    10.31.3 I ν ( z ) I μ ( z ) = ( 1 2 z ) ν + μ k = 0 ( ν + μ + k + 1 ) k ( 1 4 z 2 ) k k ! Γ ( ν + k + 1 ) Γ ( μ + k + 1 ) .
    19: 13.1 Special Notation
    m integer.
    n , s nonnegative integers.
    γ Euler’s constant (§5.2(ii)).
    The main functions treated in this chapter are the Kummer functions M ( a , b , z ) and U ( a , b , z ) , Olvers function 𝐌 ( a , b , z ) , and the Whittaker functions M κ , μ ( z ) and W κ , μ ( z ) . Other notations are: F 1 1 ( a ; b ; z ) 16.2(i)) and Φ ( a ; b ; z ) (Humbert (1920)) for M ( a , b , z ) ; Ψ ( a ; b ; z ) (Erdélyi et al. (1953a, §6.5)) for U ( a , b , z ) ; V ( b a , b , z ) (Olver (1997b, p. 256)) for e z U ( a , b , z ) ; Γ ( 1 + 2 μ ) κ , μ (Buchholz (1969, p. 12)) for M κ , μ ( z ) . …
    20: 14.21 Definitions and Basic Properties
    14.21.1 ( 1 z 2 ) d 2 w d z 2 2 z d w d z + ( ν ( ν + 1 ) μ 2 1 z 2 ) w = 0 .