About the Project

Mehler–Heine type formulas

AdvancedHelp

(0.002 seconds)

21—30 of 291 matching pages

21: Bibliography K
  • T. Kasuga and R. Sakai (2003) Orthonormal polynomials with generalized Freud-type weights. J. Approx. Theory 121 (1), pp. 13–53.
  • R. B. Kearfott (1996) Algorithm 763: INTERVAL_ARITHMETIC: A Fortran 90 module for an interval data type. ACM Trans. Math. Software 22 (4), pp. 385–392.
  • J. Koekoek, R. Koekoek, and H. Bavinck (1998) On differential equations for Sobolev-type Laguerre polynomials. Trans. Amer. Math. Soc. 350 (1), pp. 347–393.
  • T. H. Koornwinder (1975a) A new proof of a Paley-Wiener type theorem for the Jacobi transform. Ark. Mat. 13, pp. 145–159.
  • T. H. Koornwinder (1992) Askey-Wilson Polynomials for Root Systems of Type B C . In Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., Vol. 138, pp. 189–204.
  • 22: 14.7 Integer Degree and Order
    §14.7(ii) Rodrigues-Type Formulas
    §14.7(iii) Reflection Formulas
    23: Bibliography H
  • M. Hauss (1997) An Euler-Maclaurin-type formula involving conjugate Bernoulli polynomials and an application to ζ ( 2 m + 1 ) . Commun. Appl. Anal. 1 (1), pp. 15–32.
  • M. Hauss (1998) A Boole-type Formula involving Conjugate Euler Polynomials. In Charlemagne and his Heritage. 1200 Years of Civilization and Science in Europe, Vol. 2 (Aachen, 1995), P.L. Butzer, H. Th. Jongen, and W. Oberschelp (Eds.), pp. 361–375.
  • T. H. Hildebrandt (1938) Definitions of Stieltjes Integrals of the Riemann Type. Amer. Math. Monthly 45 (5), pp. 265–278.
  • P. Holmes and D. Spence (1984) On a Painlevé-type boundary-value problem. Quart. J. Mech. Appl. Math. 37 (4), pp. 525–538.
  • K. Horata (1989) An explicit formula for Bernoulli numbers. Rep. Fac. Sci. Technol. Meijo Univ. 29, pp. 1–6.
  • 24: 3.5 Quadrature
    Rules of closed type include the Newton–Cotes formulas such as the trapezoidal rules and Simpson’s rule. … For further extensions, applications, and computation of orthogonal polynomials and Gauss-type formulas, see Gautschi (1994, 1996, 2004). …
    Gauss–Laguerre Formula
    a complex Gauss quadrature formula is available. …
    25: 15.6 Integral Representations
    §15.6 Integral Representations
    15.6.1 𝐅 ( a , b ; c ; z ) = 1 Γ ( b ) Γ ( c b ) 0 1 t b 1 ( 1 t ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c > b > 0 .
    15.6.2 𝐅 ( a , b ; c ; z ) = Γ ( 1 + b c ) 2 π i Γ ( b ) 0 ( 1 + ) t b 1 ( t 1 ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c b 1 , 2 , 3 , , b > 0 .
    15.6.8 𝐅 ( a , b ; c ; z ) = 1 Γ ( c d ) 0 1 𝐅 ( a , b ; d ; z t ) t d 1 ( 1 t ) c d 1 d t , | ph ( 1 z ) | < π ; c > d > 0 .
    See accompanying text
    Figure 15.6.1: t -plane. … Magnify
    26: 31.11 Expansions in Series of Hypergeometric Functions
    The series of Type I (§31.11(iii)) are useful since they represent the functions in large domains. …
    §31.11(iii) Type I
    Every Fuchs–Frobenius solution of Heun’s equation (31.2.1) can be represented by a series of Type I. …
    §31.11(iv) Type II
    Every Heun function can be represented by a series of Type II. …
    27: 27.19 Methods of Computation: Factorization
    Techniques for factorization of integers fall into three general classes: Deterministic algorithms, Type I probabilistic algorithms whose expected running time depends on the size of the smallest prime factor, and Type II probabilistic algorithms whose expected running time depends on the size of the number to be factored. … Type I probabilistic algorithms include the Brent–Pollard rho algorithm (also called Monte Carlo method), the Pollard p 1 algorithm, and the Elliptic Curve Method (ecm). … Type II probabilistic algorithms for factoring n rely on finding a pseudo-random pair of integers ( x , y ) that satisfy x 2 y 2 ( mod n ) . …As of January 2009 the snfs holds the record for the largest integer that has been factored by a Type II probabilistic algorithm, a 307-digit composite integer. …The largest composite numbers that have been factored by other Type II probabilistic algorithms are a 63-digit integer by cfrac, a 135-digit integer by mpqs, and a 182-digit integer by gnfs. …
    28: 18.38 Mathematical Applications
    Dunkl Type Operators and Nonsymmetric Orthogonal Polynomials
    Algebraic structures were built of which special representations involve Dunkl type operators. …Eigenvalue equations involving Dunkl type operators have as eigenfunctions nonsymmetric analogues of multivariable special functions associated with root systems. … See Koornwinder (2007a, (3.13), (4.9), (4.10)) for explicit formulas. Dunkl type operators and nonsymmetric polynomials have been associated with various other families in the Askey scheme and q -Askey scheme, in particular with Wilson polynomials, see Groenevelt (2007), and with Jacobi polynomials, see Koornwinder and Bouzeffour (2011, §7). …
    29: Bibliography T
  • Y. Takei (1995) On the connection formula for the first Painlevé equation—from the viewpoint of the exact WKB analysis. Sūrikaisekikenkyūsho Kōkyūroku (931), pp. 70–99.
  • N. M. Temme (1985) Laplace type integrals: Transformation to standard form and uniform asymptotic expansions. Quart. Appl. Math. 43 (1), pp. 103–123.
  • N. M. Temme (1997) Numerical algorithms for uniform Airy-type asymptotic expansions. Numer. Algorithms 15 (2), pp. 207–225.
  • P. Terwilliger (2013) The universal Askey-Wilson algebra and DAHA of type ( C 1 , C 1 ) . SIGMA 9, pp. Paper 047, 40 pp..
  • P. G. Todorov (1991) Explicit formulas for the Bernoulli and Euler polynomials and numbers. Abh. Math. Sem. Univ. Hamburg 61, pp. 175–180.
  • 30: Bibliography P
  • V. I. Pagurova (1965) An asymptotic formula for the incomplete gamma function. Ž. Vyčisl. Mat. i Mat. Fiz. 5, pp. 118–121 (Russian).
  • R. B. Paris (2005a) A Kummer-type transformation for a F 2 2 hypergeometric function. J. Comput. Appl. Math. 173 (2), pp. 379–382.
  • A. Poquérusse and S. Alexiou (1999) Fast analytic formulas for the modified Bessel functions of imaginary order for spectral line broadening calculations. J. Quantit. Spec. and Rad. Trans. 62 (4), pp. 389–395.
  • S. Porubský (1998) Voronoi type congruences for Bernoulli numbers. In Voronoi’s Impact on Modern Science. Book I, P. Engel and H. Syta (Eds.),
  • J. L. Powell (1947) Recurrence formulas for Coulomb wave functions. Physical Rev. (2) 72 (7), pp. 626–627.