About the Project

Liouville–Green approximation theorem

AdvancedHelp

(0.001 seconds)

41—50 of 271 matching pages

41: Errata
We now include Markov’s Theorem. In regard to orthogonal polynomials on the unit circle, we now discuss monic polynomials, Verblunsky’s Theorem, and Szegő’s theorem. … The spectral theory of these operators, based on Sturm-Liouville and Liouville normal forms, distribution theory, is now discussed more completely, including linear algebra, matrices, matrices as linear operators, orthonormal expansions, Stieltjes integrals/measures, generating functions. …
  • Chapter 1 Additions

    The following additions were made in Chapter 1:

  • Subsections 1.15(vi), 1.15(vii), 2.6(iii)

    A number of changes were made with regard to fractional integrals and derivatives. In §1.15(vi) a reference to Miller and Ross (1993) was added, the fractional integral operator of order α was more precisely identified as the Riemann-Liouville fractional integral operator of order α , and a paragraph was added below (1.15.50) to generalize (1.15.47). In §1.15(vii) the sentence defining the fractional derivative was clarified. In §2.6(iii) the identification of the Riemann-Liouville fractional integral operator was made consistent with §1.15(vi).

  • 42: 27.3 Multiplicative Properties
    Examples are 1 / n and λ ( n ) , and the Dirichlet characters, defined in §27.8. …
    43: 2.1 Definitions and Elementary Properties
    This result also holds with both O ’s replaced by o ’s. … Some asymptotic approximations are expressed in terms of two or more Poincaré asymptotic expansions. …For an example see (2.8.15). …
    §2.1(iv) Uniform Asymptotic Expansions
    §2.1(v) Generalized Asymptotic Expansions
    44: 4.47 Approximations
    §4.47 Approximations
    §4.47(iii) Padé Approximations
    Luke (1975, Chapter 3) supplies real and complex approximations for ln , exp , sin , cos , tan , arctan , arcsinh . …
    45: Bibliography I
  • E. L. Ince (1926) Ordinary Differential Equations. Longmans, Green and Co., London.
  • Inverse Symbolic Calculator (website) Centre for Experimental and Constructive Mathematics, Simon Fraser University, Canada.
  • 46: Bibliography R
  • E. M. Rains (1998) Normal limit theorems for symmetric random matrices. Probab. Theory Related Fields 112 (3), pp. 411–423.
  • A. Ralston (1965) Rational Chebyshev approximation by Remes’ algorithms. Numer. Math. 7 (4), pp. 322–330.
  • M. Razaz and J. L. Schonfelder (1981) Remark on Algorithm 498: Airy functions using Chebyshev series approximations. ACM Trans. Math. Software 7 (3), pp. 404–405.
  • P. Ribenboim (1979) 13 Lectures on Fermat’s Last Theorem. Springer-Verlag, New York.
  • G. B. Rybicki (1989) Dawson’s integral and the sampling theorem. Computers in Physics 3 (2), pp. 85–87.
  • 47: 7.24 Approximations
    §7.24 Approximations
    §7.24(i) Approximations in Terms of Elementary Functions
  • Cody (1969) provides minimax rational approximations for erf x and erfc x . The maximum relative precision is about 20S.

  • Cody (1968) gives minimax rational approximations for the Fresnel integrals (maximum relative precision 19S); for a Fortran algorithm and comments see Snyder (1993).

  • Cody et al. (1970) gives minimax rational approximations to Dawson’s integral F ( x ) (maximum relative precision 20S–22S).

  • 48: 27.15 Chinese Remainder Theorem
    §27.15 Chinese Remainder Theorem
    The Chinese remainder theorem states that a system of congruences x a 1 ( mod m 1 ) , , x a k ( mod m k ) , always has a solution if the moduli are relatively prime in pairs; the solution is unique (mod m ), where m is the product of the moduli. This theorem is employed to increase efficiency in calculating with large numbers by making use of smaller numbers in most of the calculation. …By the Chinese remainder theorem each integer in the data can be uniquely represented by its residues (mod m 1 ), (mod m 2 ), (mod m 3 ), and (mod m 4 ), respectively. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. …
    49: Bibliography C
  • L. Carlitz (1961b) The Staudt-Clausen theorem. Math. Mag. 34, pp. 131–146.
  • B. C. Carlson (1971) New proof of the addition theorem for Gegenbauer polynomials. SIAM J. Math. Anal. 2, pp. 347–351.
  • B. C. Carlson (1978) Short proofs of three theorems on elliptic integrals. SIAM J. Math. Anal. 9 (3), pp. 524–528.
  • F. Clarke (1989) The universal von Staudt theorems. Trans. Amer. Math. Soc. 315 (2), pp. 591–603.
  • G. Cornell, J. H. Silverman, and G. Stevens (Eds.) (1997) Modular Forms and Fermat’s Last Theorem. Springer-Verlag, New York.
  • 50: 25.20 Approximations
    §25.20 Approximations
  • Cody et al. (1971) gives rational approximations for ζ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • Piessens and Branders (1972) gives the coefficients of the Chebyshev-series expansions of s ζ ( s + 1 ) and ζ ( s + k ) , k = 2 , 3 , 4 , 5 , 8 , for 0 s 1 (23D).

  • Morris (1979) gives rational approximations for Li 2 ( x ) 25.12(i)) for 0.5 x 1 . Precision is varied with a maximum of 24S.

  • Antia (1993) gives minimax rational approximations for Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .