About the Project

Liouville%E2%80%93Green%20approximation%20theorem

AdvancedHelp

(0.003 seconds)

11—20 of 341 matching pages

11: Bibliography E
  • Á. Elbert and A. Laforgia (2000) Further results on McMahon’s asymptotic approximations. J. Phys. A 33 (36), pp. 6333–6341.
  • W. N. Everitt (2005a) A catalogue of Sturm-Liouville differential equations. In Sturm-Liouville theory, pp. 271–331.
  • W. N. Everitt (2005b) Charles Sturm and the development of Sturm-Liouville theory in the years 1900 to 1950. In Sturm-Liouville theory, pp. 45–74.
  • 12: Bibliography L
  • D. F. Lawden (1989) Elliptic Functions and Applications. Applied Mathematical Sciences, Vol. 80, Springer-Verlag, New York.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • L. Lorch, M. E. Muldoon, and P. Szegő (1970) Higher monotonicity properties of certain Sturm-Liouville functions. III. Canad. J. Math. 22, pp. 1238–1265.
  • L. Lorch, M. E. Muldoon, and P. Szegő (1972) Higher monotonicity properties of certain Sturm-Liouville functions. IV. Canad. J. Math. 24, pp. 349–368.
  • L. Lorch and P. Szegő (1963) Higher monotonicity properties of certain Sturm-Liouville functions.. Acta Math. 109, pp. 55–73.
  • 13: Bibliography B
  • L. J. Billera, C. Greene, R. Simion, and R. P. Stanley (Eds.) (1996) Formal Power Series and Algebraic Combinatorics. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 24, American Mathematical Society, Providence, RI.
  • I. Bloch, M. H. Hull, A. A. Broyles, W. G. Bouricius, B. E. Freeman, and G. Breit (1950) Methods of calculation of radial wave functions and new tables of Coulomb functions. Physical Rev. (2) 80, pp. 553–560.
  • F. Bowman (1958) Introduction to Bessel Functions. Dover Publications Inc., New York.
  • J. P. Boyd and A. Natarov (1998) A Sturm-Liouville eigenproblem of the fourth kind: A critical latitude with equatorial trapping. Stud. Appl. Math. 101 (4), pp. 433–455.
  • W. S. Burnside and A. W. Panton (1960) The Theory of Equations: With an Introduction to the Theory of Binary Algebraic Forms. Dover Publications, New York.
  • 14: Bibliography P
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • R. Piessens (1984a) Chebyshev series approximations for the zeros of the Bessel functions. J. Comput. Phys. 53 (1), pp. 188–192.
  • R. Piessens and S. Ahmed (1986) Approximation for the turning points of Bessel functions. J. Comput. Phys. 64 (1), pp. 253–257.
  • T. Prellberg and A. L. Owczarek (1995) Stacking models of vesicles and compact clusters. J. Statist. Phys. 80 (3–4), pp. 755–779.
  • J. D. Pryce (1993) Numerical Solution of Sturm-Liouville Problems. Monographs on Numerical Analysis, The Clarendon Press, Oxford University Press, New York.
  • 15: 27.6 Divisor Sums
    27.6.1 d | n λ ( d ) = { 1 , n  is a square , 0 , otherwise .
    16: 27.7 Lambert Series as Generating Functions
    27.7.6 n = 1 λ ( n ) x n 1 x n = n = 1 x n 2 .
    17: Bibliography M
  • L. C. Maximon (1955) On the evaluation of indefinite integrals involving the special functions: Application of method. Quart. Appl. Math. 13, pp. 84–93.
  • S. C. Milne (1996) New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function. Proc. Nat. Acad. Sci. U.S.A. 93 (26), pp. 15004–15008.
  • S. C. Milne (1997) Balanced Θ 2 3 summation theorems for U ( n ) basic hypergeometric series. Adv. Math. 131 (1), pp. 93–187.
  • M. E. Muldoon (1970) Singular integrals whose kernels involve certain Sturm-Liouville functions. I. J. Math. Mech. 19 (10), pp. 855–873.
  • M. E. Muldoon (1977) Higher monotonicity properties of certain Sturm-Liouville functions. V. Proc. Roy. Soc. Edinburgh Sect. A 77 (1-2), pp. 23–37.
  • 18: 3.8 Nonlinear Equations
    Initial approximations to the zeros can often be found from asymptotic or other approximations to f ( z ) , or by application of the phase principle or Rouché’s theorem; see §1.10(iv). … … For describing the distribution of complex zeros of solutions of linear homogeneous second-order differential equations by methods based on the LiouvilleGreen (WKB) approximation, see Segura (2013). … Consider x = 20 and j = 19 . We have p ( 20 ) = 19 ! and a 19 = 1 + 2 + + 20 = 210 . …
    19: Bibliography G
  • D. Gómez-Ullate, N. Kamran, and R. Milson (2009) An extended class of orthogonal polynomials defined by a Sturm-Liouville problem. J. Math. Anal. Appl. 359 (1), pp. 352–367.
  • M. B. Green, J. H. Schwarz, and E. Witten (1988a) Superstring Theory: Introduction, Vol. 1. 2nd edition, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge.
  • M. B. Green, J. H. Schwarz, and E. Witten (1988b) Superstring Theory: Loop Amplitudes, Anomalies and Phenomenolgy, Vol. 2. 2nd edition, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge.
  • C. H. Greene, U. Fano, and G. Strinati (1979) General form of the quantum-defect theory. Phys. Rev. A 19 (4), pp. 1485–1509.
  • D. H. Greene and D. E. Knuth (1982) Mathematics for the Analysis of Algorithms. Progress in Computer Science, Vol. 1, Birkhäuser Boston, Boston, MA.
  • 20: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    These are based on the Liouville normal form of (1.13.29). … The materials developed here follow from the extensions of the Sturm–Liouville theory of second order ODEs as developed by Weyl, to include the limit point and limit circle singular cases. …Friedman (1990) provides a useful introduction to both approaches; as does the conference proceeding Amrein et al. (2005), overviewing the combination of Sturm–Liouville theory and Hilbert space theory. …