About the Project

Legendre%20elliptic%20integrals

AdvancedHelp

(0.006 seconds)

11—16 of 16 matching pages

11: Bibliography O
  • S. Okui (1974) Complete elliptic integrals resulting from infinite integrals of Bessel functions. J. Res. Nat. Bur. Standards Sect. B 78B (3), pp. 113–135.
  • S. Okui (1975) Complete elliptic integrals resulting from infinite integrals of Bessel functions. II. J. Res. Nat. Bur. Standards Sect. B 79B (3-4), pp. 137–170.
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • F. W. J. Olver and J. M. Smith (1983) Associated Legendre functions on the cut. J. Comput. Phys. 51 (3), pp. 502–518.
  • F. W. J. Olver (1975b) Legendre functions with both parameters large. Philos. Trans. Roy. Soc. London Ser. A 278, pp. 175–185.
  • 12: Bibliography V
  • H. Van de Vel (1969) On the series expansion method for computing incomplete elliptic integrals of the first and second kinds. Math. Comp. 23 (105), pp. 61–69.
  • J. F. Van Diejen and V. P. Spiridonov (2001) Modular hypergeometric residue sums of elliptic Selberg integrals. Lett. Math. Phys. 58 (3), pp. 223–238.
  • N. Virchenko and I. Fedotova (2001) Generalized Associated Legendre Functions and their Applications. World Scientific Publishing Co. Inc., Singapore.
  • H. Volkmer (1982) Integral relations for Lamé functions. SIAM J. Math. Anal. 13 (6), pp. 978–987.
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • 13: Bibliography D
  • A. Dienstfrey and J. Huang (2006) Integral representations for elliptic functions. J. Math. Anal. Appl. 316 (1), pp. 142–160.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • T. M. Dunster (2003b) Uniform asymptotic expansions for associated Legendre functions of large order. Proc. Roy. Soc. Edinburgh Sect. A 133 (4), pp. 807–827.
  • P. L. Duren (1991) The Legendre Relation for Elliptic Integrals. In Paul Halmos: Celebrating 50 Years of Mathematics, J. H. Ewing and F. W. Gehring (Eds.), pp. 305–315.
  • 14: Errata
  • Subsection 19.2(ii) and Equation (19.2.9)

    The material surrounding (19.2.8), (19.2.9) has been updated so that the complementary complete elliptic integrals of the first and second kind are defined with consistent multivalued properties and correct analytic continuation. In particular, (19.2.9) has been corrected to read

    19.2.9
    K ( k ) = { K ( k ) , | ph k | 1 2 π , K ( k ) 2 i K ( k ) , 1 2 π < ± ph k < π ,
    E ( k ) = { E ( k ) , | ph k | 1 2 π , E ( k ) 2 i ( K ( k ) E ( k ) ) , 1 2 π < ± ph k < π
  • Equation (14.6.6)
    14.6.6 𝖯 ν m ( x ) = ( 1 x 2 ) m / 2 x 1 x 1 𝖯 ν ( x ) ( d x ) m

    The right-hand side has been corrected by replacing the Legendre function P ν ( x ) with the Ferrers function 𝖯 ν ( x ) .

  • Equations (22.14.16), (22.14.17)
    22.14.16 0 K ( k ) ln ( sn ( t , k ) ) d t = π 4 K ( k ) 1 2 K ( k ) ln k ,
    22.14.17 0 K ( k ) ln ( cn ( t , k ) ) d t = π 4 K ( k ) + 1 2 K ( k ) ln ( k / k )

    Originally, a factor of π was missing from the terms containing the 1 4 K ( k ) .

    Reported by Fred Hucht on 2020-08-06

  • Chapters 8, 20, 36

    Several new equations have been added. See (8.17.24), (20.7.34), §20.11(v), (26.12.27), (36.2.28), and (36.2.29).

  • Equation (36.10.14)
    36.10.14 3 ( 2 Ψ ( E ) x 2 2 Ψ ( E ) y 2 ) + 2 i z Ψ ( E ) x x Ψ ( E ) = 0

    Originally this equation appeared with Ψ ( H ) x in the second term, rather than Ψ ( E ) x .

    Reported 2010-04-02.

  • 15: Bibliography R
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • K. Reinsch and W. Raab (2000) Elliptic Integrals of the First and Second Kind – Comparison of Bulirsch’s and Carlson’s Algorithms for Numerical Calculation. In Special Functions (Hong Kong, 1999), C. Dunkl, M. Ismail, and R. Wong (Eds.), pp. 293–308.
  • L. Robin (1957) Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome I. Gauthier-Villars, Paris.
  • L. Robin (1958) Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome II. Gauthier-Villars, Paris.
  • L. Robin (1959) Fonctions sphériques de Legendre et fonctions sphéroïdales. Tome III. Collection Technique et Scientifique du C. N. E. T. Gauthier-Villars, Paris.
  • 16: Bibliography G
  • A. Gervois and H. Navelet (1985a) Integrals of three Bessel functions and Legendre functions. I. J. Math. Phys. 26 (4), pp. 633–644.
  • A. Gervois and H. Navelet (1985b) Integrals of three Bessel functions and Legendre functions. II. J. Math. Phys. 26 (4), pp. 645–655.
  • M. L. Glasser (1976) Definite integrals of the complete elliptic integral K . J. Res. Nat. Bur. Standards Sect. B 80B (2), pp. 313–323.
  • N. Gray (2002) Automatic reduction of elliptic integrals using Carlson’s relations. Math. Comp. 71 (237), pp. 311–318.
  • A. J. Guttmann and T. Prellberg (1993) Staircase polygons, elliptic integrals, Heun functions, and lattice Green functions. Phys. Rev. E 47 (4), pp. R2233–R2236.