About the Project

Legendre elliptic integrals

AdvancedHelp

(0.018 seconds)

31—40 of 76 matching pages

31: 19.12 Asymptotic Approximations
§19.12 Asymptotic Approximations
β–Ί
19.12.1 K ⁑ ( k ) = m = 0 ( 1 2 ) m ⁒ ( 1 2 ) m m ! ⁒ m ! ⁒ k 2 ⁒ m ⁒ ( ln ⁑ ( 1 k ) + d ⁑ ( m ) ) , 0 < | k | < 1 ,
β–Ί
19.12.2 E ⁑ ( k ) = 1 + 1 2 ⁒ m = 0 ( 1 2 ) m ⁒ ( 3 2 ) m ( 2 ) m ⁒ m ! ⁒ k 2 ⁒ m + 2 ⁒ ( ln ⁑ ( 1 k ) + d ⁑ ( m ) 1 ( 2 ⁒ m + 1 ) ⁒ ( 2 ⁒ m + 2 ) ) , | k | < 1 ,
β–Ί
19.12.4 ( 1 α 2 ) ⁒ Π ⁑ ( α 2 , k ) = ( ln ⁑ 4 k ) ⁒ ( 1 + O ⁑ ( k 2 ) ) α 2 ⁒ R C ⁑ ( 1 , 1 α 2 ) , < α 2 < 1 ,
β–Ί
19.12.5 ( 1 α 2 ) ⁒ Π ⁑ ( α 2 , k ) = ( ln ⁑ ( 4 k ) R C ⁑ ( 1 , 1 α 2 ) ) ⁒ ( 1 + O ⁑ ( k 2 ) ) , 1 < α 2 < .
32: 22.14 Integrals
β–Ί
22.14.16 0 K ⁑ ( k ) ln ⁑ ( sn ⁑ ( t , k ) ) ⁒ d t = Ο€ 4 ⁒ K ⁑ ( k ) 1 2 ⁒ K ⁑ ( k ) ⁒ ln ⁑ k ,
β–Ί
22.14.17 0 K ⁑ ( k ) ln ⁑ ( cn ⁑ ( t , k ) ) ⁒ d t = Ο€ 4 ⁒ K ⁑ ( k ) + 1 2 ⁒ K ⁑ ( k ) ⁒ ln ⁑ ( k / k ) ,
β–Ί
22.14.18 0 K ⁑ ( k ) ln ⁑ ( dn ⁑ ( t , k ) ) ⁒ d t = 1 2 ⁒ K ⁑ ( k ) ⁒ ln ⁑ k .
33: 22.4 Periods, Poles, and Zeros
β–ΊFor example, the poles of sn ⁑ ( z , k ) , abbreviated as sn in the following tables, are at z = 2 ⁒ m ⁒ K ⁑ + ( 2 ⁒ n + 1 ) ⁒ i ⁒ K ⁑ . … β–ΊFigure 22.4.1 illustrates the locations in the z -plane of the poles and zeros of the three principal Jacobian functions in the rectangle with vertices 0 , 2 ⁒ K ⁑ , 2 ⁒ K ⁑ + 2 ⁒ i ⁒ K ⁑ , 2 ⁒ i ⁒ K ⁑ . … β–ΊThe set of points z = m ⁒ K ⁑ + n ⁒ i ⁒ K ⁑ , m , n β„€ , comprise the lattice for the 12 Jacobian functions; all other lattice unit cells are generated by translation of the fundamental unit cell by m ⁒ K ⁑ + n ⁒ i ⁒ K ⁑ , where again m , n β„€ . … β–ΊThis half-period will be plus or minus a member of the triple K ⁑ , i ⁒ K ⁑ , K ⁑ + i ⁒ K ⁑ ; the other two members of this triple are quarter periods of p ⁣ q ⁑ ( z , k ) . … β–ΊFor example, sn ⁑ ( z + K ⁑ , k ) = cd ⁑ ( z , k ) . …
34: 29.17 Other Solutions
β–Ί
29.17.1 F ⁑ ( z ) = E ⁑ ( z ) ⁒ i ⁒ K ⁑ z d u ( E ⁑ ( u ) ) 2 .
35: 19.25 Relations to Other Functions
β–Ί
§19.25(i) Legendre’s Integrals as Symmetric Integrals
β–Ί β–ΊThus the five permutations induce five transformations of Legendre’s integrals (and also of the Jacobian elliptic functions). … β–Ί
§19.25(iii) Symmetric Integrals as Legendre’s Integrals
β–Ί
36: 23.6 Relations to Other Functions
β–Ί β–Ί β–Ί
23.6.20 e 3 ⁑ = K 2 ⁑ 3 ⁒ Ο‰ 1 2 ⁒ ( 1 + k 2 ) .
β–Ί
23.6.27 ΞΆ ⁑ ( z | 𝕃 1 ) ΞΆ ⁑ ( z + 2 ⁒ K ⁑ | 𝕃 1 ) + ΞΆ ⁑ ( 2 ⁒ K ⁑ | 𝕃 1 ) = ns ⁑ ( z , k ) ,
β–Ί
23.6.28 ΞΆ ⁑ ( z | 𝕃 2 ) ΞΆ ⁑ ( z + 2 ⁒ K ⁑ | 𝕃 2 ) + ΞΆ ⁑ ( 2 ⁒ K ⁑ | 𝕃 2 ) = ds ⁑ ( z , k ) ,
37: 23.4 Graphics
β–Ί
§23.4(i) Real Variables
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 23.4.6: Οƒ ⁑ ( x ; 0 , g 3 ⁑ ) for 5 x 5 , g 3 ⁑ = 0. … Magnify
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 23.4.7: ⁑ ( x ) with Ο‰ 1 = K ⁑ ( k ) , Ο‰ 3 = i ⁒ K ⁑ ( k ) for 0 x 9 , k 2 = 0. … Magnify
β–Ί
§23.4(ii) Complex Variables
β–Ί
β–Ί
See accompanying text
β–Ί
Figure 23.4.8: ⁑ ( x + i ⁒ y ) with Ο‰ 1 = K ⁑ ( k ) , Ο‰ 3 = i ⁒ K ⁑ ( k ) for 2 ⁒ K ⁑ ( k ) x 2 ⁒ K ⁑ ( k ) , 0 y 6 ⁒ K ⁑ ( k ) , k 2 = 0.9 . … Magnify 3D Help
38: 19.30 Lengths of Plane Curves
β–Ί
19.30.3 s / a = E ⁑ ( Ο• , k ) = R F ⁑ ( c 1 , c k 2 , c ) 1 3 ⁒ k 2 ⁒ R D ⁑ ( c 1 , c k 2 , c ) ,
β–Ί
19.30.5 L ⁑ ( a , b ) = 4 ⁒ a ⁒ E ⁑ ( k ) = 8 ⁒ a ⁒ R G ⁑ ( 0 , b 2 / a 2 , 1 ) = 8 ⁒ R G ⁑ ( 0 , a 2 , b 2 ) = 8 ⁒ a ⁒ b ⁒ R G ⁑ ( 0 , a 2 , b 2 ) ,
β–Ί
19.30.6 s ( 1 / k ) = a 2 b 2 ⁒ F ⁑ ( Ο• , k ) = a 2 b 2 ⁒ R F ⁑ ( c 1 , c k 2 , c ) , k 2 = ( a 2 b 2 ) / ( a 2 + Ξ» ) , c = csc 2 ⁑ Ο• .
β–Ί
19.30.12 s = a ⁒ F ⁑ ( Ο• , 1 / 2 ) , Ο• = arcsin ⁑ 2 / ( q + 1 ) = arccos ⁑ ( tan ⁑ ΞΈ ) .
β–Ί
19.30.13 P = 4 ⁒ 2 ⁒ a 2 ⁒ R F ⁑ ( 0 , 1 , 2 ) = 2 ⁒ a 2 × 5.24411 51 ⁒ = 4 ⁒ a ⁒ K ⁑ ( 1 / 2 ) = a × 7.41629 87 ⁒ .
39: 19.37 Tables
§19.37 Tables
β–Ί
40: 22.20 Methods of Computation
β–ΊThis formula for dn becomes unstable near x = K . If only the value of dn ⁑ ( x , k ) at x = K is required then the exact value is in the table 22.5.1. … β–ΊIf k , k are given with k 2 + k 2 = 1 and ⁑ k / ⁑ k < 0 , then K ⁑ , K ⁑ can be found from … β–ΊJacobi’s epsilon function can be computed from its representation (22.16.30) in terms of theta functions and complete elliptic integrals; compare §20.14. … β–Ί