About the Project

Laplace integral

AdvancedHelp

(0.004 seconds)

31—40 of 53 matching pages

31: 16.20 Integrals and Series
§16.20 Integrals and Series
Integrals of the Meijer G -function are given in Apelblat (1983, §19), Erdélyi et al. (1953a, §5.5.2), Erdélyi et al. (1954a, §§6.9 and 7.5), Luke (1969a, §3.6), Luke (1975, §5.6), Mathai (1993, §3.10), and Prudnikov et al. (1990, §2.24). Extensive lists of Laplace transforms and inverse Laplace transforms of the Meijer G -function are given in Prudnikov et al. (1992a, §3.40) and Prudnikov et al. (1992b, §3.38). …
32: 9.10 Integrals
9.10.14 0 e p t Ai ( t ) d t = e p 3 / 3 ( 1 3 p F 1 1 ( 1 3 ; 4 3 ; 1 3 p 3 ) 3 4 / 3 Γ ( 4 3 ) + p 2 F 1 1 ( 2 3 ; 5 3 ; 1 3 p 3 ) 3 5 / 3 Γ ( 5 3 ) ) , p .
9.10.15 0 e p t Ai ( t ) d t = 1 3 e p 3 / 3 ( Γ ( 1 3 , 1 3 p 3 ) Γ ( 1 3 ) + Γ ( 2 3 , 1 3 p 3 ) Γ ( 2 3 ) ) , p > 0 ,
9.10.16 0 e p t Bi ( t ) d t = 1 3 e p 3 / 3 ( Γ ( 2 3 , 1 3 p 3 ) Γ ( 2 3 ) Γ ( 1 3 , 1 3 p 3 ) Γ ( 1 3 ) ) , p > 0 .
33: 14.31 Other Applications
§14.31(ii) Conical Functions
The conical functions 𝖯 1 2 + i τ m ( x ) appear in boundary-value problems for the Laplace equation in toroidal coordinates (§14.19(i)) for regions bounded by cones, by two intersecting spheres, or by one or two confocal hyperboloids of revolution (Kölbig (1981)). These functions are also used in the Mehler–Fock integral transform (§14.20(vi)) for problems in potential and heat theory, and in elementary particle physics (Sneddon (1972, Chapter 7) and Braaksma and Meulenbeld (1967)). … Many additional physical applications of Legendre polynomials and associated Legendre functions include solution of the Helmholtz equation, as well as the Laplace equation, in spherical coordinates (Temme (1996b)), quantum mechanics (Edmonds (1974)), and high-frequency scattering by a sphere (Nussenzveig (1965)). …
34: Bibliography H
  • L. Habsieger (1988) Une q -intégrale de Selberg et Askey. SIAM J. Math. Anal. 19 (6), pp. 1475–1489.
  • P. I. Hadži (1973) The Laplace transform for expressions that contain a probability function. Bul. Akad. Štiince RSS Moldoven. 1973 (2), pp. 78–80, 93 (Russian).
  • P. I. Hadži (1975a) Certain integrals that contain a probability function. Bul. Akad. Štiince RSS Moldoven. 1975 (2), pp. 86–88, 95 (Russian).
  • H. Hancock (1958) Elliptic Integrals. Dover Publications Inc., New York.
  • R. A. Handelsman and J. S. Lew (1970) Asymptotic expansion of Laplace transforms near the origin. SIAM J. Math. Anal. 1 (1), pp. 118–130.
  • 35: 10.32 Integral Representations
    10.32.16 I μ ( x ) K ν ( x ) = 0 J μ ± ν ( 2 x sinh t ) e ( μ ± ν ) t d t , ( μ ν ) > 1 2 , ( μ ± ν ) > 1 , x > 0 .
    36: Bibliography S
  • H. E. Salzer (1955) Orthogonal polynomials arising in the numerical evaluation of inverse Laplace transforms. Math. Tables Aids Comput. 9 (52), pp. 164–177.
  • J. L. Schiff (1999) The Laplace Transform: Theory and Applications. Undergraduate Texts in Mathematics, Springer-Verlag, New York.
  • I. Shavitt and M. Karplus (1965) Gaussian-transform method for molecular integrals. I. Formulation for energy integrals. J. Chem. Phys. 43 (2), pp. 398–414.
  • N. T. Shawagfeh (1992) The Laplace transforms of products of Airy functions. Dirāsāt Ser. B Pure Appl. Sci. 19 (2), pp. 7–11.
  • B. L. Shea (1988) Algorithm AS 239. Chi-squared and incomplete gamma integral. Appl. Statist. 37 (3), pp. 466–473.
  • 37: 10.22 Integrals
    10.22.49 0 t μ 1 e a t J ν ( b t ) d t = ( 1 2 b ) ν a μ + ν Γ ( μ + ν ) 𝐅 ( μ + ν 2 , μ + ν + 1 2 ; ν + 1 ; b 2 a 2 ) , ( μ + ν ) > 0 , ( a ± i b ) > 0 ,
    10.22.66 0 e a t J ν ( b t ) J ν ( c t ) d t = 1 π ( b c ) 1 2 Q ν 1 2 ( a 2 + b 2 + c 2 2 b c ) , ν > 1 2 .
    38: 20.10 Integrals
    §20.10 Integrals
    §20.10(ii) Laplace Transforms with respect to the Lattice Parameter
    20.10.4 0 e s t θ 1 ( β π 2 | i π t 2 ) d t = 0 e s t θ 2 ( ( 1 + β ) π 2 | i π t 2 ) d t = s sinh ( β s ) sech ( s ) ,
    20.10.5 0 e s t θ 3 ( ( 1 + β ) π 2 | i π t 2 ) d t = 0 e s t θ 4 ( β π 2 | i π t 2 ) d t = s cosh ( β s ) csch ( s ) .
    For further integrals of theta functions see Erdélyi et al. (1954a, pp. 61–62 and 339), Prudnikov et al. (1990, pp. 356–358), Prudnikov et al. (1992a, §3.41), and Gradshteyn and Ryzhik (2000, pp. 627–628).
    39: 10.43 Integrals
    10.43.22 0 t μ 1 e a t K ν ( t ) d t = { ( 1 2 π ) 1 2 Γ ( μ ν ) Γ ( μ + ν ) ( 1 a 2 ) 1 2 μ + 1 4 𝖯 ν 1 2 μ + 1 2 ( a ) , 1 < a < 1 , ( 1 2 π ) 1 2 Γ ( μ ν ) Γ ( μ + ν ) ( a 2 1 ) 1 2 μ + 1 4 P ν 1 2 μ + 1 2 ( a ) , a 0 , a 1 .
    40: Bibliography N
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • G. Nemes (2013a) An explicit formula for the coefficients in Laplace’s method. Constr. Approx. 38 (3), pp. 471–487.
  • G. Nemes (2020) An extension of Laplace’s method. Constr. Approx. 51 (2), pp. 247–272.
  • E. Neuman (1969a) Elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 99–102.
  • E. Neuman (1969b) On the calculation of elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 91–94.