About the Project

Julia%20sets

AdvancedHelp

(0.002 seconds)

21—30 of 605 matching pages

21: 26.10 Integer Partitions: Other Restrictions
β–Ί p ⁑ ( S , n ) denotes the number of partitions of n into parts taken from the set S . The set { n 1 | n ± j ( mod k ) } is denoted by A j , k . The set { 2 , 3 , 4 , } is denoted by T . … β–Ί
26.10.14 p ⁑ ( π’Ÿ ⁒ 2 , T , n ) = p ⁑ ( A 2 , 5 , n ) , T = { 2 , 3 , 4 , } ,
β–Ί
26.10.16 p ⁑ ( π’Ÿ , n ) e Ο€ ⁒ n / 3 ( 768 ⁒ n 3 ) 1 / 4 , n .
22: 6.16 Mathematical Applications
β–ΊHence if x = Ο€ / ( 2 ⁒ n ) and n , then the limiting value of S n ⁑ ( x ) overshoots 1 4 ⁒ Ο€ by approximately 18%. Similarly if x = Ο€ / n , then the limiting value of S n ⁑ ( x ) undershoots 1 4 ⁒ Ο€ by approximately 10%, and so on. … β–Ί
β–ΊSee accompanying textβ–Ί
Figure 6.16.2: The logarithmic integral li ⁑ ( x ) , together with vertical bars indicating the value of Ο€ ⁑ ( x ) for x = 10 , 20 , , 1000 . Magnify
23: 32.8 Rational Solutions
β–Ί
32.8.3 w ⁑ ( z ; 3 ) = 3 ⁒ z 2 z 3 + 4 6 ⁒ z 2 ⁒ ( z 3 + 10 ) z 6 + 20 ⁒ z 3 80 ,
β–Ί
32.8.4 w ⁑ ( z ; 4 ) = 1 z + 6 ⁒ z 2 ⁒ ( z 3 + 10 ) z 6 + 20 ⁒ z 3 80 9 ⁒ z 5 ⁒ ( z 3 + 40 ) z 9 + 60 ⁒ z 6 + 11200 .
β–Ί
Q 3 ⁑ ( z ) = z 6 + 20 ⁒ z 3 80 ,
β–ΊIn the general case assume Ξ³ ⁒ Ξ΄ 0 , so that as in §32.2(ii) we may set Ξ³ = 1 and Ξ΄ = 1 . … β–ΊIn the general case assume Ξ΄ 0 , so that as in §32.2(ii) we may set Ξ΄ = 1 2 . …
24: 7.8 Inequalities
β–Ί
7.8.2 1 x + x 2 + 2 < 𝖬 ⁑ ( x ) 1 x + x 2 + ( 4 / Ο€ ) , x 0 ,
β–Ί
7.8.5 x 2 2 ⁒ x 2 + 1 x 2 ⁒ ( 2 ⁒ x 2 + 5 ) 4 ⁒ x 4 + 12 ⁒ x 2 + 3 x ⁒ 𝖬 ⁑ ( x ) < 2 ⁒ x 4 + 9 ⁒ x 2 + 4 4 ⁒ x 4 + 20 ⁒ x 2 + 15 < x 2 + 1 2 ⁒ x 2 + 3 , x 0 .
β–ΊThe function F ⁑ ( x ) / 1 e 2 ⁒ x 2 is strictly decreasing for x > 0 . … β–Ί
7.8.8 erf ⁑ x < 1 e 4 ⁒ x 2 / Ο€ , x > 0 .
25: 11.14 Tables
β–Ί
  • Zhang and Jin (1996) tabulates 𝐇 n ⁑ ( x ) and 𝐋 n ⁑ ( x ) for n = 4 ⁒ ( 1 ) ⁒ 3 and x = 0 ⁒ ( 1 ) ⁒ 20 to 8D or 7S.

  • β–Ί
  • Abramowitz and Stegun (1964, Chapter 12) tabulates 0 x ( I 0 ⁑ ( t ) 𝐋 0 ⁑ ( t ) ) ⁒ d t and ( 2 / Ο€ ) ⁒ x t 1 ⁒ 𝐇 0 ⁑ ( t ) ⁒ d t for x = 0 ⁒ ( .1 ) ⁒ 5 to 5D or 7D; 0 x ( 𝐇 0 ⁑ ( t ) Y 0 ⁑ ( t ) ) ⁒ d t ( 2 / Ο€ ) ⁒ ln ⁑ x , 0 x ( I 0 ⁑ ( t ) 𝐋 0 ⁑ ( t ) ) ⁒ d t ( 2 / Ο€ ) ⁒ ln ⁑ x , and x t 1 ⁒ ( 𝐇 0 ⁑ ( t ) Y 0 ⁑ ( t ) ) ⁒ d t for x 1 = 0 ⁒ ( .01 ) ⁒ 0.2 to 6D.

  • 26: 10.3 Graphics
    β–Ί
    β–Ί
    See accompanying text
    β–Ί
    Figure 10.3.14: H 5 ( 1 ) ⁑ ( x + i ⁒ y ) , 20 x 10 , 4 y 4 . … Magnify 3D Help
    β–Ί
    β–Ί
    See accompanying text
    β–Ί
    Figure 10.3.16: H 5.5 ( 1 ) ⁑ ( x + i ⁒ y ) , 20 x 10 , 4 y 4 . … Magnify 3D Help
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 10.3.17: J ~ 1 / 2 ⁑ ( x ) , Y ~ 1 / 2 ⁑ ( x ) , 0.01 x 10 . Magnify
    27: 36 Integrals with Coalescing Saddles
    28: GergΕ‘ Nemes
    β–ΊAs of September 20, 2021, Nemes performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 25 Zeta and Related Functions. …
    29: Wolter Groenevelt
    β–ΊAs of September 20, 2022, Groenevelt performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 18 Orthogonal Polynomials. …
    30: 33.24 Tables
    β–Ί
  • Abramowitz and Stegun (1964, Chapter 14) tabulates F 0 ⁑ ( Ξ· , ρ ) , G 0 ⁑ ( Ξ· , ρ ) , F 0 ⁑ ( Ξ· , ρ ) , and G 0 ⁑ ( Ξ· , ρ ) for Ξ· = 0.5 ⁒ ( .5 ) ⁒ 20 and ρ = 1 ⁒ ( 1 ) ⁒ 20 , 5S; C 0 ⁑ ( Ξ· ) for Ξ· = 0 ⁒ ( .05 ) ⁒ 3 , 6S.