About the Project

Hermite polynomial case

AdvancedHelp

(0.007 seconds)

31—39 of 39 matching pages

31: Bibliography K
  • T. H. Koornwinder and F. Bouzeffour (2011) Nonsymmetric Askey-Wilson polynomials as vector-valued polynomials. Appl. Anal. 90 (3-4), pp. 731–746.
  • T. H. Koornwinder (2007a) The relationship between Zhedanov’s algebra AW ( 3 ) and the double affine Hecke algebra in the rank one case. SIGMA 3, pp. Paper 063, 15 pp..
  • T. H. Koornwinder (2012) Askey-Wilson polynomial. Scholarpedia 7 (7), pp. 7761.
  • E. D. Krupnikov and K. S. Kölbig (1997) Some special cases of the generalized hypergeometric function F q q + 1 . J. Comput. Appl. Math. 78 (1), pp. 79–95.
  • A. B. J. Kuijlaars and R. Milson (2015) Zeros of exceptional Hermite polynomials. J. Approx. Theory 200, pp. 28–39.
  • 32: 18.13 Continued Fractions
    The following formulae are explicit cases of (18.2.34)–(18.2.36); this area is fully explored in §§18.30(vi) and 18.30(vii). …
    Legendre
    Laguerre
    Hermite
    H n ( x ) is the denominator of the n th approximant to: …
    33: 18.40 Methods of Computation
    §18.40(i) Computation of Polynomials
    Orthogonal polynomials can be computed from their explicit polynomial form by Horner’s scheme (§1.11(i)). … … This is a challenging case as the desired w RCP ( x ) on [ 1 , 1 ] has an essential singularity at x = 1 . … Further, exponential convergence in N , via the Derivative Rule, rather than the power-law convergence of the histogram methods, is found for the inversion of Gegenbauer, Attractive, as well as Repulsive, Coulomb–Pollaczek, and Hermite weights and zeros to approximate w ( x ) for these OP systems on x [ 1 , 1 ] and ( , ) respectively, Reinhardt (2018), and Reinhardt (2021b), Reinhardt (2021a). …
    34: 3.5 Quadrature
    In the case of Chebyshev weight functions w ( x ) = ( 1 x ) α ( 1 + x ) β on [ 1 , 1 ] , with | α | = | β | = 1 2 , the nodes x k , weights w k , and error constant γ n , are as follows: …
    Gauss–Hermite Formula
    The p n ( x ) are the monic Hermite polynomials H n ( x ) 18.3). … In case of the Jacobi polynomials we have p n ( x ) = P n ( α , β ) ( x ) / k n , q n ( x ) = P n ( α , β ) ( x ) / h n , and … For these cases the integration path may need to be deformed; see §3.5(ix). …
    35: 18.10 Integral Representations
    Ultraspherical
    Legendre
    Hermite
    for the Jacobi, Laguerre, and Hermite polynomials. …
    Hermite
    36: Bibliography S
  • F. C. Smith (1939b) Relations among the fundamental solutions of the generalized hypergeometric equation when p = q + 1 . II. Logarithmic cases. Bull. Amer. Math. Soc. 45 (12), pp. 927–935.
  • F. Stenger (1966a) Error bounds for asymptotic solutions of differential equations. I. The distinct eigenvalue case. J. Res. Nat. Bur. Standards Sect. B 70B, pp. 167–186.
  • F. Stenger (1966b) Error bounds for asymptotic solutions of differential equations. II. The general case. J. Res. Nat. Bur. Standards Sect. B 70B, pp. 187–210.
  • W. F. Sun (1996) Uniform asymptotic expansions of Hermite polynomials. M. Phil. thesis, City University of Hong Kong.
  • O. Szász (1951) On the relative extrema of the Hermite orthogonal functions. J. Indian Math. Soc. (N.S.) 15, pp. 129–134.
  • 37: Errata
  • Chapter 18 Additions

    The following additions were made in Chapter 18:

    • Section 18.2

      In Subsection 18.2(i), Equation (18.2.1_5); the paragraph title “Orthogonality on Finite Point Sets” has been changed to “Orthogonality on Countable Sets”, and there are minor changes in the presentation of the final paragraph, including a new equation (18.2.4_5). The presentation of Subsection 18.2(iii) has changed, Equation (18.2.5_5) was added and an extra paragraph on standardizations has been included. The presentation of Subsection 18.2(iv) has changed and it has been expanded with two extra paragraphs and several new equations, (18.2.9_5), (18.2.11_1)–(18.2.11_9). Subsections 18.2(v) (with (18.2.12_5), (18.2.14)–(18.2.17)) and 18.2(vi) (with (18.2.17)–(18.2.20)) have been expanded. New subsections, 18.2(vii)18.2(xii), with Equations (18.2.21)–(18.2.46),

    • Section 18.3

      A new introduction, minor changes in the presentation, and three new paragraphs.

    • Section 18.5

      Extra details for Chebyshev polynomials, and Equations (18.5.4_5), (18.5.11_1)–(18.5.11_4), (18.5.17_5).

    • Section 18.8

      Line numbers and two extra rows were added to Table 18.8.1.

    • Section 18.9

      Subsection 18.9(i) has been expanded, and 18.9(iii) has some additional explanation. Equations (18.9.2_1), (18.9.2_2), (18.9.18_5) and Table 18.9.2 were added.

    • Section 18.12

      Three extra generating functions, (18.12.2_5), (18.12.3_5), (18.12.17).

    • Section 18.14

      Equation (18.14.3_5). New subsection, 18.14(iv), with Equations (18.14.25)–(18.14.27).

    • Section 18.15

      Equation (18.15.4_5).

    • Section 18.16

      The title of Subsection 18.16(iii) was changed from “Ultraspherical and Legendre” to “Ultraspherical, Legendre and Chebyshev”. New subsection, 18.16(vii) Discriminants, with Equations (18.16.19)–(18.16.21).

    • Section 18.17

      Extra explanatory text at many places and seven extra integrals (18.17.16_5), (18.17.21_1)–(18.17.21_3), (18.17.28_5), (18.17.34_5), (18.17.41_5).

    • Section 18.18

      Extra explanatory text at several places and the title of Subsection 18.18(iv) was changed from “Connection Formulas” to “Connection and Inversion Formulas”.

    • Section 18.19

      A new introduction.

    • Section 18.21

      Equation (18.21.13).

    • Section 18.25

      Extra explanatory text in Subsection 18.25(i) and the title of Subsection 18.25(ii) was changed from “Weights and Normalizations: Continuous Cases” to “Weights and Standardizations: Continuous Cases”.

    • Section 18.26

      In Subsection 18.26(i) an extra paragraph on dualities has been included, with Equations (18.26.4_1), (18.26.4_2).

    • Section 18.27

      Extra text at the start of this section and twenty seven extra formulas, (18.27.4_1), (18.27.4_2), (18.27.6_5), (18.27.9_5), (18.27.12_5), (18.27.14_1)–(18.27.14_6), (18.27.17_1)–(18.27.17_3), (18.27.20_5), (18.27.25), (18.27.26), (18.28.1_5).

    • Section 18.28

      A big expansion. Six extra formulas in Subsection 18.28(ii) ((18.28.6_1)–(18.28.6_5)) and three extra formulas in Subsection 18.28(viii) ((18.28.21)–(18.28.23)). New subsections, 18.28(ix)18.28(xi), with Equations (18.28.23)–(18.28.34).

    • Section 18.30

      Originally this section did not have subsections. The original seven formulas have now more explanatory text and are split over two subsections. New subsections 18.30(iii)18.30(viii), with Equations (18.30.8)–(18.30.31).

    • Section 18.32

      This short section has been expanded, with Equation (18.32.2).

    • Section 18.33

      Additional references and a new large subsection, 18.33(vi), including Equations (18.33.17)–(18.33.32).

    • Section 18.34

      This section has been expanded, including an extra orthogonality relations (18.34.5_5), (18.34.7_1)–(18.34.7_3).

    • Section 18.35

      This section on Pollaczek polynomials has been significantly updated with much more explanations and as well to include the Pollaczek polynomials of type 3 which are the most general with three free parameters. The Pollaczek polynomials which were previously treated, namely those of type 1 and type 2 are special cases of the type 3 Pollaczek polynomials. In the first paragraph of this section an extensive description of the relations between the three types of Pollaczek polynomials is given which was lacking previously. Equations (18.35.0_5), (18.35.2_1)–(18.35.2_5), (18.35.4_5), (18.35.6_1)–(18.35.6_6), (18.35.10).

    • Section 18.36

      This section on miscellaneous polynomials has been expanded with new subsections, 18.36(v) on non-classical Laguerre polynomials and 18.36(vi) with examples of exceptional orthogonal polynomials, with Equations (18.36.1)–(18.36.10). In the titles of Subsections 18.36(ii) and 18.36(iii) we replaced “OP’s” by “Orthogonal Polynomials”.

    • Section 18.38

      The paragraphs of Subsection 18.38(i) have been re-ordered and one paragraph was added. The title of Subsection 18.38(ii) was changed from “Classical OP’s: Other Applications” to “Classical OP’s: Mathematical Developments and Applications”. Subsection 18.38(iii) has been expanded with seven new paragraphs, and Equations (18.38.4)–(18.38.11).

    • Section 18.39

      This section was completely rewritten. The previous 18.39(i) Quantum Mechanics has been replaced by Subsections 18.39(i) Quantum Mechanics and 18.39(ii) A 3D Separable Quantum System, the Hydrogen Atom, containing the same essential information; the original content of the subsection is reproduced below for reference. Subsection 18.39(ii) was moved to 18.39(v) Other Applications. New subsections, 18.39(iii) Non Classical Weight Functions of Utility in DVR Method in the Physical Sciences, 18.39(iv) Coulomb–Pollaczek Polynomials and J-Matrix Methods; Equations (18.39.7)–(18.39.48); and Figures 18.39.1, 18.39.2.

      The original text of 18.39(i) Quantum Mechanics was:

      “Classical OP’s appear when the time-dependent Schrödinger equation is solved by separation of variables. Consider, for example, the one-dimensional form of this equation for a particle of mass m with potential energy V ( x ) :

      errata.1 ( 2 2 m 2 x 2 + V ( x ) ) ψ ( x , t ) = i t ψ ( x , t ) ,

      where is the reduced Planck’s constant. On substituting ψ ( x , t ) = η ( x ) ζ ( t ) , we obtain two ordinary differential equations, each of which involve the same constant E . The equation for η ( x ) is

      errata.2 d 2 η d x 2 + 2 m 2 ( E V ( x ) ) η = 0 .

      For a harmonic oscillator, the potential energy is given by

      errata.3 V ( x ) = 1 2 m ω 2 x 2 ,

      where ω is the angular frequency. For (18.39.2) to have a nontrivial bounded solution in the interval < x < , the constant E (the total energy of the particle) must satisfy

      errata.4 E = E n = ( n + 1 2 ) ω , n = 0 , 1 , 2 , .

      The corresponding eigenfunctions are

      errata.5 η n ( x ) = π 1 4 2 1 2 n ( n ! b ) 1 2 H n ( x / b ) e x 2 / 2 b 2 ,

      where b = ( / m ω ) 1 / 2 , and H n is the Hermite polynomial. For further details, see Seaborn (1991, p. 224) or Nikiforov and Uvarov (1988, pp. 71-72).

      A second example is provided by the three-dimensional time-independent Schrödinger equation

      errata.6 2 ψ + 2 m 2 ( E V ( 𝐱 ) ) ψ = 0 ,

      when this is solved by separation of variables in spherical coordinates (§1.5(ii)). The eigenfunctions of one of the separated ordinary differential equations are Legendre polynomials. See Seaborn (1991, pp. 69-75).

      For a third example, one in which the eigenfunctions are Laguerre polynomials, see Seaborn (1991, pp. 87-93) and Nikiforov and Uvarov (1988, pp. 76-80 and 320-323).”

    • Section 18.40

      The old section is now Subsection 18.40(i) and a large new subsection, 18.40(ii), on the classical moment problem has been added, with formulae (18.40.1)–(18.40.10) and Figures 18.40.1, 18.40.2.

  • 38: 18.28 Askey–Wilson Class
    §18.28(vi) Continuous q -Hermite Polynomials
    §18.28(vii) Continuous q 1 -Hermite Polynomials
    For continuous q 1 -Hermite polynomials the orthogonality measure is not unique. … These systems are the q -Racah polynomials and its limit cases. …
    From Continuous q -Hermite to Hermite
    39: Bibliography N
  • G. Nemes (2013b) Error bounds and exponential improvement for Hermite’s asymptotic expansion for the gamma function. Appl. Anal. Discrete Math. 7 (1), pp. 161–179.
  • P. G. Nevai (1979) Orthogonal polynomials. Mem. Amer. Math. Soc. 18 (213), pp. v+185 pp..
  • P. Nevai (1986) Géza Freud, orthogonal polynomials and Christoffel functions. A case study. J. Approx. Theory 48 (1), pp. 3–167.
  • M. Noumi and J. V. Stokman (2004) Askey-Wilson polynomials: an affine Hecke algebra approach. In Laredo Lectures on Orthogonal Polynomials and Special Functions, Adv. Theory Spec. Funct. Orthogonal Polynomials, pp. 111–144.
  • M. Noumi and Y. Yamada (1999) Symmetries in the fourth Painlevé equation and Okamoto polynomials. Nagoya Math. J. 153, pp. 53–86.