About the Project

Hankel%20loop%20integral

AdvancedHelp

(0.002 seconds)

21—30 of 503 matching pages

21: 10.74 Methods of Computation
For evaluation of the Hankel functions H ν ( 1 ) ( z ) and H ν ( 2 ) ( z ) for complex values of ν and z based on the integral representations (10.9.18) see Remenets (1973). …
§10.74(vi) Zeros and Associated Values
Hankel Transform
The spherical Bessel transform is the Hankel transform (10.22.76) in the case when ν is half an odd positive integer. …
22: 10.54 Integral Representations
§10.54 Integral Representations
10.54.1 𝗃 n ( z ) = z n 2 n + 1 n ! 0 π cos ( z cos θ ) ( sin θ ) 2 n + 1 d θ .
𝗁 n ( 1 ) ( z ) = ( i ) n + 1 π i ( 1 + ) e i z t Q n ( t ) d t ,
𝗁 n ( 2 ) ( z ) = ( i ) n + 1 π i ( 1 + ) e i z t Q n ( t ) d t , | ph z | < 1 2 π .
Additional integral representations can be obtained by combining the definitions (10.47.3)–(10.47.9) with the results given in §10.9 and §10.32.
23: 10.11 Analytic Continuation
§10.11 Analytic Continuation
10.11.3 sin ( ν π ) H ν ( 1 ) ( z e m π i ) = sin ( ( m 1 ) ν π ) H ν ( 1 ) ( z ) e ν π i sin ( m ν π ) H ν ( 2 ) ( z ) ,
H ν ( 1 ) ( z ¯ ) = H ν ( 2 ) ( z ) ¯ , H ν ( 2 ) ( z ¯ ) = H ν ( 1 ) ( z ) ¯ .
24: 10.20 Uniform Asymptotic Expansions for Large Order
§10.20 Uniform Asymptotic Expansions for Large Order
10.20.6 H ν ( 1 ) ( ν z ) H ν ( 2 ) ( ν z ) } 2 e π i / 3 ( 4 ζ 1 z 2 ) 1 4 ( Ai ( e ± 2 π i / 3 ν 2 3 ζ ) ν 1 3 k = 0 A k ( ζ ) ν 2 k + e ± 2 π i / 3 Ai ( e ± 2 π i / 3 ν 2 3 ζ ) ν 5 3 k = 0 B k ( ζ ) ν 2 k ) ,
10.20.9 H ν ( 1 ) ( ν z ) H ν ( 2 ) ( ν z ) } 4 e 2 π i / 3 z ( 1 z 2 4 ζ ) 1 4 ( e 2 π i / 3 Ai ( e ± 2 π i / 3 ν 2 3 ζ ) ν 4 3 k = 0 C k ( ζ ) ν 2 k + Ai ( e ± 2 π i / 3 ν 2 3 ζ ) ν 2 3 k = 0 D k ( ζ ) ν 2 k ) ,
§10.20(iii) Double Asymptotic Properties
For asymptotic properties of the expansions (10.20.4)–(10.20.6) with respect to large values of z see §10.41(v).
25: 15.14 Integrals
§15.14 Integrals
Integrals of the form x α ( x + t ) β F ( a , b ; c ; x ) d x and more complicated forms are given in Apelblat (1983, pp. 370–387), Prudnikov et al. (1990, §§1.15 and 2.21), Gradshteyn and Ryzhik (2000, §7.5) and Koornwinder (2015). … Hankel transforms of hypergeometric functions are given in Oberhettinger (1972, §1.17) and Erdélyi et al. (1954b, §8.17). For other integral transforms see Erdélyi et al. (1954b), Prudnikov et al. (1992b, §4.3.43), and also §15.9(ii).
26: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • §8.26(iv) Generalized Exponential Integral
  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 27: 10.2 Definitions
    Bessel Functions of the Third Kind (Hankel Functions)
    These solutions of (10.2.1) are denoted by H ν ( 1 ) ( z ) and H ν ( 2 ) ( z ) , and their defining properties are given by … The principal branches of H ν ( 1 ) ( z ) and H ν ( 2 ) ( z ) are two-valued and discontinuous on the cut ph z = ± π . …
    Branch Conventions
    28: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • G. Nemes (2017b) Error Bounds for the Large-Argument Asymptotic Expansions of the Hankel and Bessel Functions. Acta Appl. Math. 150, pp. 141–177.
  • E. Neuman (1969a) Elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 99–102.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • 29: Bibliography F
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • F. Feuillebois (1991) Numerical calculation of singular integrals related to Hankel transform. Comput. Math. Appl. 21 (2-3), pp. 87–94.
  • C. L. Frenzen and R. Wong (1985a) A note on asymptotic evaluation of some Hankel transforms. Math. Comp. 45 (172), pp. 537–548.
  • 30: 36 Integrals with Coalescing Saddles
    Chapter 36 Integrals with Coalescing Saddles