About the Project

Gaussian polynomials

AdvancedHelp

(0.002 seconds)

21—25 of 25 matching pages

21: Bibliography S
  • R. P. Sagar (1991a) A Gaussian quadrature for the calculation of generalized Fermi-Dirac integrals. Comput. Phys. Comm. 66 (2-3), pp. 271–275.
  • I. Shavitt and M. Karplus (1965) Gaussian-transform method for molecular integrals. I. Formulation for energy integrals. J. Chem. Phys. 43 (2), pp. 398–414.
  • I. Shavitt (1963) The Gaussian Function in Calculations of Statistical Mechanics and Quantum Mechanics. In Methods in Computational Physics: Advances in Research and Applications, B. Alder, S. Fernbach, and M. Rotenberg (Eds.), Vol. 2, pp. 1–45.
  • I. M. Sheffer (1939) Some properties of polynomial sets of type zero. Duke Math. J. 5, pp. 590–622.
  • A. H. Stroud and D. Secrest (1966) Gaussian Quadrature Formulas. Prentice-Hall Inc., Englewood Cliffs, N.J..
  • 22: Bibliography C
  • L. Carlitz (1954b) A note on Euler numbers and polynomials. Nagoya Math. J. 7, pp. 35–43.
  • J. M. Carnicer, E. Mainar, and J. M. Peña (2020) Stability properties of disk polynomials. Numer. Algorithms.
  • F. Chapeau-Blondeau and A. Monir (2002) Numerical evaluation of the Lambert W function and application to generation of generalized Gaussian noise with exponent 1/2. IEEE Trans. Signal Process. 50 (9), pp. 2160–2165.
  • P. A. Clarkson and K. Jordaan (2018) Properties of generalized Freud polynomials. J. Approx. Theory 225, pp. 148–175.
  • P. A. Clarkson (2003b) The fourth Painlevé equation and associated special polynomials. J. Math. Phys. 44 (11), pp. 5350–5374.
  • 23: 3.11 Approximation Techniques
    §3.11(i) Minimax Polynomial Approximations
    For convergence results for Padé approximants, and the connection with continued fractions and Gaussian quadrature, see Baker and Graves-Morris (1996, §4.7). … Suppose a function f ( x ) is approximated by the polynomialSplines are defined piecewise and usually by low-degree polynomials. …
    24: Errata
    We have significantly expanded the section on associated orthogonal polynomials, including expanded properties of associated Laguerre, Hermite, Meixner–Pollaczek, and corecursive orthogonal and numerator and denominator orthogonal polynomials. …In regard to orthogonal polynomials on the unit circle, we now discuss monic polynomials, Verblunsky’s Theorem, and Szegő’s theorem. We also discuss non-classical Laguerre polynomials and give much more details and examples on exceptional orthogonal polynomials. We have also completely expanded our discussion on applications of orthogonal polynomials in the physical sciences, and also methods of computation for orthogonal polynomials. …
  • Equation (35.7.3)

    Originally the matrix in the argument of the Gaussian hypergeometric function of matrix argument F 1 2 was written with round brackets. This matrix has been rewritten with square brackets to be consistent with the rest of the DLMF.

  • 25: 3.2 Linear Algebra
    §3.2(i) Gaussian Elimination
    Iterative Refinement
    §3.2(ii) Gaussian Elimination for a Tridiagonal Matrix