About the Project

Fourier integrals

AdvancedHelp

(0.003 seconds)

21—30 of 49 matching pages

21: 1.8 Fourier Series
It follows from definition (1.14.1) that the integral in (1.8.14) is equal to 2 π ( f ) ( 2 π n ) . …
22: 22.16 Related Functions
Integral Representation
Fourier Series
Relation to Elliptic Integrals
Integral Representations
See Figure 22.16.2. …
23: 28.28 Integrals, Integral Representations, and Integral Equations
28.28.16 0 sin ( 2 h cos y cosh t ) Ce 2 n ( t , h 2 ) d t = π A 0 2 n ( h 2 ) 2 ce 2 n ( 1 2 π , h 2 ) ( ce 2 n ( y , h 2 ) 2 π C 2 n ( h 2 ) fe 2 n ( y , h 2 ) ) ,
28.28.20 2 π 0 π 𝒞 2 ( j ) ( 2 h R ) cos ( 2 ϕ ) ce 2 m ( t , h 2 ) d t = ε ( 1 ) + m A 2 2 m ( h 2 ) Mc 2 m ( j ) ( z , h ) ,
28.28.21 4 π 0 π / 2 𝒞 2 + 1 ( j ) ( 2 h R ) cos ( ( 2 + 1 ) ϕ ) ce 2 m + 1 ( t , h 2 ) d t = ( 1 ) + m A 2 + 1 2 m + 1 ( h 2 ) Mc 2 m + 1 ( j ) ( z , h ) ,
28.28.22 4 π 0 π / 2 𝒞 2 + 1 ( j ) ( 2 h R ) sin ( ( 2 + 1 ) ϕ ) se 2 m + 1 ( t , h 2 ) d t = ( 1 ) + m B 2 + 1 2 m + 1 ( h 2 ) Ms 2 m + 1 ( j ) ( z , h ) ,
28.28.23 2 π 0 π 𝒞 2 + 2 ( j ) ( 2 h R ) sin ( ( 2 + 2 ) ϕ ) se 2 m + 2 ( t , h 2 ) d t = ( 1 ) + m B 2 + 2 2 m + 2 ( h 2 ) Ms 2 m + 2 ( j ) ( z , h ) .
24: 10.23 Sums
10.23.11 a k = 1 2 π i | t | = c f ( t ) O k ( t ) d t , 0 < c < c ,
Fourier–Bessel Expansion
10.23.18 0 1 t 1 2 | f ( t ) | d t < ,
10.23.19 a m = 2 ( J ν + 1 ( j ν , m ) ) 2 0 1 t f ( t ) J ν ( j ν , m t ) d t , ν 1 2 ,
25: 15.17 Mathematical Applications
§15.17(ii) Conformal Mappings
Hypergeometric functions, especially complete elliptic integrals, also play an important role in quasiconformal mapping. … Harmonic analysis can be developed for the Jacobi transform either as a generalization of the Fourier-cosine transform (§1.14(ii)) or as a specialization of a group Fourier transform. … Quadratic transformations give insight into the relation of elliptic integrals to the arithmetic-geometric mean (§19.22(ii)). …
26: 18.2 General Orthogonal Polynomials
More generally than (18.2.1)–(18.2.3), w ( x ) d x may be replaced in (18.2.1) by d μ ( x ) , where the measure μ is the Lebesgue–Stieltjes measure μ α corresponding to a bounded nondecreasing function α on the closure of ( a , b ) with an infinite number of points of increase, and such that a b | x | n d μ ( x ) < for all n . … For such a system, functions f L w 2 ( ( a , b ) ) and sequences { λ n } ( n = 0 , 1 , 2 , ) satisfying n = 0 h n | λ n | 2 < can be related to each other in a similar way as was done for Fourier series in (1.8.1) and (1.8.2):
18.2.24 λ n = h n 1 a b f ( x ) p n ( x ) w ( x ) d x
18.2.26 μ n = a b x n d μ ( x ) , n = 0 , 1 , 2 , .
27: Bibliography V
  • G. Valent (1986) An integral transform involving Heun functions and a related eigenvalue problem. SIAM J. Math. Anal. 17 (3), pp. 688–703.
  • H. Van de Vel (1969) On the series expansion method for computing incomplete elliptic integrals of the first and second kinds. Math. Comp. 23 (105), pp. 61–69.
  • C. Van Loan (1992) Computational Frameworks for the Fast Fourier Transform. Frontiers in Applied Mathematics, Vol. 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • H. Volkmer (1982) Integral relations for Lamé functions. SIAM J. Math. Anal. 13 (6), pp. 978–987.
  • H. Volkmer (2021) Fourier series representation of Ferrers function 𝖯 .
  • 28: Bibliography O
  • F. Oberhettinger (1990) Tables of Fourier Transforms and Fourier Transforms of Distributions. Springer-Verlag, Berlin.
  • F. Oberhettinger (1973) Fourier Expansions. A Collection of Formulas. Academic Press, New York-London.
  • S. Okui (1974) Complete elliptic integrals resulting from infinite integrals of Bessel functions. J. Res. Nat. Bur. Standards Sect. B 78B (3), pp. 113–135.
  • S. Okui (1975) Complete elliptic integrals resulting from infinite integrals of Bessel functions. II. J. Res. Nat. Bur. Standards Sect. B 79B (3-4), pp. 137–170.
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • 29: 30.15 Signal Analysis
    §30.15(ii) Integral Equation
    §30.15(iii) Fourier Transform
    Equations (30.15.4) and (30.15.6) show that the functions ϕ n are σ -bandlimited, that is, their Fourier transform vanishes outside the interval [ σ , σ ] . …
    30.15.7 τ τ ϕ k ( t ) ϕ n ( t ) d t = Λ n δ k , n ,
    30.15.8 ϕ k ( t ) ϕ n ( t ) d t = δ k , n .
    30: 18.17 Integrals
    18.17.18 0 1 ( 1 x 2 ) λ 1 2 C 2 n + 1 ( λ ) ( x ) sin ( x y ) d x = ( 1 ) n π Γ ( 2 n + 2 λ + 1 ) J 2 n + λ + 1 ( y ) ( 2 n + 1 ) ! Γ ( λ ) ( 2 y ) λ .
    18.17.32 0 e a x x ν 1 2 n L 2 n ( ν 1 2 n ) ( a x ) cos ( x y ) d x = ( 1 ) n Γ ( ν ) 2 ( 2 n ) ! y 2 n ( ( a + i y ) ν + ( a i y ) ν ) , ν > 2 n , a > 0 .