About the Project

Euler integral

AdvancedHelp

(0.009 seconds)

41—50 of 206 matching pages

41: 19.33 Triaxial Ellipsoids
19.33.11 U = 1 2 ( α β γ ) 2 R F ( α 2 , β 2 , γ 2 ) 0 ( g ( r ) ) 2 d r ,
42: 25.11 Hurwitz Zeta Function
25.11.5 ζ ( s , a ) = n = 0 N 1 ( n + a ) s + ( N + a ) 1 s s 1 s N x x ( x + a ) s + 1 d x , s 1 , s > 0 , a > 0 , N = 0 , 1 , 2 , 3 , .
25.11.25 ζ ( s , a ) = 1 Γ ( s ) 0 x s 1 e a x 1 e x d x , s > 1 , a > 0 .
25.11.27 ζ ( s , a ) = 1 2 a s + a 1 s s 1 + 1 Γ ( s ) 0 ( 1 e x 1 1 x + 1 2 ) x s 1 e a x d x , s > 1 , s 1 , a > 0 .
25.11.31 1 Γ ( s ) 0 x s 1 e a x 2 cosh x d x = 4 s ( ζ ( s , 1 4 + 1 4 a ) ζ ( s , 3 4 + 1 4 a ) ) , s > 0 , a > 1 .
25.11.35 n = 0 ( 1 ) n ( n + a ) s = 1 Γ ( s ) 0 x s 1 e a x 1 + e x d x = 2 s ( ζ ( s , 1 2 a ) ζ ( s , 1 2 ( 1 + a ) ) ) , a > 0 , s > 0 ; or a = 0 , a 0 , 0 < s < 1 .
43: 8.14 Integrals
8.14.1 0 e a x γ ( b , x ) Γ ( b ) d x = ( 1 + a ) b a , a > 0 , b > 1 ,
8.14.2 0 e a x Γ ( b , x ) d x = Γ ( b ) 1 ( 1 + a ) b a , a > 1 , b > 1 .
8.14.3 0 x a 1 γ ( b , x ) d x = Γ ( a + b ) a , a < 0 , ( a + b ) > 0 ,
8.14.4 0 x a 1 Γ ( b , x ) d x = Γ ( a + b ) a , a > 0 , ( a + b ) > 0 ,
8.14.5 0 x a 1 e s x γ ( b , x ) d x = Γ ( a + b ) b ( 1 + s ) a + b F ( 1 , a + b ; 1 + b ; 1 / ( 1 + s ) ) , s > 0 , ( a + b ) > 0 ,
44: 19.26 Addition Theorems
19.26.9 R J ( x + λ , y + λ , z + λ , p + λ ) + R J ( x + μ , y + μ , z + μ , p + μ ) = R J ( x , y , z , p ) 3 R C ( γ δ , γ ) ,
45: 25.14 Lerch’s Transcendent
25.14.5 Φ ( z , s , a ) = 1 Γ ( s ) 0 x s 1 e a x 1 z e x d x , s > 1 , a > 0 if z = 1 ; s > 0 , a > 0 if z [ 1 , ) .
46: 14.25 Integral Representations
14.25.1 P ν μ ( z ) = ( z 2 1 ) μ / 2 2 ν Γ ( μ ν ) Γ ( ν + 1 ) 0 ( sinh t ) 2 ν + 1 ( z + cosh t ) ν + μ + 1 d t , μ > ν > 1 ,
14.25.2 𝑸 ν μ ( z ) = π 1 / 2 ( z 2 1 ) μ / 2 2 μ Γ ( μ + 1 2 ) Γ ( ν μ + 1 ) 0 ( sinh t ) 2 μ ( z + ( z 2 1 ) 1 / 2 cosh t ) ν + μ + 1 d t , ( ν + 1 ) > μ > 1 2 ,
47: 8.2 Definitions and Basic Properties
8.2.1 γ ( a , z ) = 0 z t a 1 e t d t , a > 0 ,
8.2.2 Γ ( a , z ) = z t a 1 e t d t ,
8.2.7 γ ( a , z ) = 1 Γ ( a ) 0 1 t a 1 e z t d t , a > 0 .
48: 19.28 Integrals of Elliptic Integrals
19.28.1 0 1 t σ 1 R F ( 0 , t , 1 ) d t = 1 2 ( B ( σ , 1 2 ) ) 2 ,
19.28.2 0 1 t σ 1 R G ( 0 , t , 1 ) d t = σ 4 σ + 2 ( B ( σ , 1 2 ) ) 2 ,
19.28.3 0 1 t σ 1 ( 1 t ) R D ( 0 , t , 1 ) d t = 3 4 σ + 2 ( B ( σ , 1 2 ) ) 2 .
19.28.4 0 1 t σ 1 ( 1 t ) c 1 R a ( b 1 , b 2 ; t , 1 ) d t = Γ ( c ) Γ ( σ ) Γ ( σ + b 2 a ) Γ ( σ + c a ) Γ ( σ + b 2 ) , c = b 1 + b 2 > 0 , σ > max ( 0 , a b 2 ) .
49: 12.12 Integrals
12.12.1 0 e 1 4 t 2 t μ 1 U ( a , t ) d t = π 2 1 2 ( μ + a + 1 2 ) Γ ( μ ) Γ ( 1 2 ( μ + a + 3 2 ) ) , μ > 0 ,
12.12.2 0 e 3 4 t 2 t a 3 2 U ( a , t ) d t = 2 1 4 + 1 2 a Γ ( a 1 2 ) cos ( ( 1 4 a + 1 8 ) π ) , a < 1 2 ,
12.12.3 0 e 1 4 t 2 t a 1 2 ( x 2 + t 2 ) 1 U ( a , t ) d t = π / 2 Γ ( 1 2 a ) x a 3 2 e 1 4 x 2 U ( a , x ) , a < 1 2 , x > 0 .
12.12.4 ( U ( a , z ) ) 2 + ( U ¯ ( a , z ) ) 2 = 2 3 2 π Γ ( 1 2 a ) 0 e 2 a t + 1 2 z 2 tanh t sinh ( 2 t ) d t , a < 1 2 .
50: 2.6 Distributional Methods
2.6.4 0 t α 1 ( x + t ) α + β d t = Γ ( α ) Γ ( β ) Γ ( α + β ) 1 x β , α > 0 , β > 0 .
2.6.33 𝐼 μ f ( x ) = 1 Γ ( μ ) 0 x ( x t ) μ 1 f ( t ) d t , μ > 0 ;
2.6.35 𝐼 μ f ( x ) = 1 Γ ( μ ) ( t μ 1 f ) ( x ) .
2.6.45 𝐼 μ f ( x ) = s = 0 n 1 a s Γ ( 1 s α ) Γ ( μ + 1 s α ) x μ s α s = 1 n c s Γ ( μ + 1 s ) x μ s + 1 x n δ n ( x ) ,
2.6.48 𝐼 μ f ( x ) = 1 Γ ( μ ) 0 x ( x t ) μ 1 t 1 α ( 1 + t ) 1 d t ,