About the Project

Euler beta integral

AdvancedHelp

(0.009 seconds)

21—30 of 81 matching pages

21: 18.18 Sums
18.18.1 a n = n ! ( 2 n + α + β + 1 ) Γ ( n + α + β + 1 ) 2 α + β + 1 Γ ( n + α + 1 ) Γ ( n + β + 1 ) 1 1 f ( x ) P n ( α , β ) ( x ) ( 1 x ) α ( 1 + x ) β d x .
22: 8.1 Special Notation
The functions treated in this chapter are the incomplete gamma functions γ ( a , z ) , Γ ( a , z ) , γ ( a , z ) , P ( a , z ) , and Q ( a , z ) ; the incomplete beta functions B x ( a , b ) and I x ( a , b ) ; the generalized exponential integral E p ( z ) ; the generalized sine and cosine integrals si ( a , z ) , ci ( a , z ) , Si ( a , z ) , and Ci ( a , z ) . Alternative notations include: Prym’s functions P z ( a ) = γ ( a , z ) , Q z ( a ) = Γ ( a , z ) , Nielsen (1906a, pp. 25–26), Batchelder (1967, p. 63); ( a , z ) ! = γ ( a + 1 , z ) , [ a , z ] ! = Γ ( a + 1 , z ) , Dingle (1973); B ( a , b , x ) = B x ( a , b ) , I ( a , b , x ) = I x ( a , b ) , Magnus et al. (1966); Si ( a , x ) Si ( 1 a , x ) , Ci ( a , x ) Ci ( 1 a , x ) , Luke (1975).
23: 32.2 Differential Equations
32.2.13 z ( 1 z ) 𝐼 ( w d t t ( t 1 ) ( t z ) ) = w ( w 1 ) ( w z ) ( α + β z w 2 + γ ( z 1 ) ( w 1 ) 2 + ( δ 1 2 ) z ( z 1 ) ( w z ) 2 ) ,
24: 15.14 Integrals
§15.14 Integrals
15.14.1 0 x s 1 𝐅 ( a , b c ; x ) d x = Γ ( s ) Γ ( a s ) Γ ( b s ) Γ ( a ) Γ ( b ) Γ ( c s ) , min ( a , b ) > s > 0 .
Integrals of the form x α ( x + t ) β F ( a , b ; c ; x ) d x and more complicated forms are given in Apelblat (1983, pp. 370–387), Prudnikov et al. (1990, §§1.15 and 2.21), Gradshteyn and Ryzhik (2000, §7.5) and Koornwinder (2015). … For other integral transforms see Erdélyi et al. (1954b), Prudnikov et al. (1992b, §4.3.43), and also §15.9(ii).
25: Software Index
26: 18.17 Integrals
18.17.9 ( 1 x ) α + μ P n ( α + μ , β μ ) ( x ) Γ ( α + μ + n + 1 ) = x 1 ( 1 y ) α P n ( α , β ) ( y ) Γ ( α + n + 1 ) ( y x ) μ 1 Γ ( μ ) d y , μ > 0 , 1 < x < 1 ,
18.17.10 x β + μ ( x + 1 ) n Γ ( β + μ + n + 1 ) P n ( α , β + μ ) ( x 1 x + 1 ) = 0 x y β ( y + 1 ) n Γ ( β + n + 1 ) P n ( α , β ) ( y 1 y + 1 ) ( x y ) μ 1 Γ ( μ ) d y , μ > 0 , x > 0 ,
18.17.11 Γ ( n + α + β μ + 1 ) x n + α + β μ + 1 P n ( α , β μ ) ( 1 2 x 1 ) = x Γ ( n + α + β + 1 ) y n + α + β + 1 P n ( α , β ) ( 1 2 y 1 ) ( y x ) μ 1 Γ ( μ ) d y , α + β + 1 > μ > 0 , x > 1 ,
18.17.16 1 1 ( 1 x ) α ( 1 + x ) β P n ( α , β ) ( x ) e i x y d x = ( i y ) n e i y n ! 2 n + α + β + 1 B ( n + α + 1 , n + β + 1 ) F 1 1 ( n + α + 1 ; 2 n + α + β + 2 ; 2 i y ) .
18.17.36 1 1 ( 1 x ) z 1 ( 1 + x ) β P n ( α , β ) ( x ) d x = 2 β + z Γ ( z ) Γ ( 1 + β + n ) ( 1 + α z ) n n ! Γ ( 1 + β + z + n ) , z > 0 .
27: 19.5 Maclaurin and Related Expansions
19.5.4 Π ( α 2 , k ) = π 2 n = 0 ( 1 2 ) n n ! m = 0 n ( 1 2 ) m m ! k 2 m α 2 n 2 m = π 2 F 1 ( 1 2 ; 1 2 , 1 ; 1 ; k 2 , α 2 ) ,
19.5.4_1 F ( ϕ , k ) = m = 0 ( 1 2 ) m sin 2 m + 1 ϕ ( 2 m + 1 ) m ! F 1 2 ( m + 1 2 , 1 2 m + 3 2 ; sin 2 ϕ ) k 2 m = sin ϕ F 1 ( 1 2 ; 1 2 , 1 2 ; 3 2 ; sin 2 ϕ , k 2 sin 2 ϕ ) ,
19.5.4_2 E ( ϕ , k ) = m = 0 ( 1 2 ) m sin 2 m + 1 ϕ ( 2 m + 1 ) m ! F 1 2 ( m + 1 2 , 1 2 m + 3 2 ; sin 2 ϕ ) k 2 m = sin ϕ F 1 ( 1 2 ; 1 2 , 1 2 ; 3 2 ; sin 2 ϕ , k 2 sin 2 ϕ ) ,
19.5.4_3 Π ( ϕ , α 2 , k ) = m = 0 ( 1 2 ) m sin 2 m + 1 ϕ ( 2 m + 1 ) m ! F 1 ( m + 1 2 ; 1 2 , 1 ; m + 3 2 ; sin 2 ϕ , α 2 sin 2 ϕ ) k 2 m ,
28: 5.20 Physical Applications
5.20.3 ψ n ( β ) = n e β W d x = ( 2 π ) n / 2 β ( n / 2 ) ( β n ( n 1 ) / 4 ) ( Γ ( 1 + 1 2 β ) ) n j = 1 n Γ ( 1 + 1 2 j β ) .
5.20.5 ψ n ( β ) = 1 ( 2 π ) n [ π , π ] n e β W d θ 1 d θ n = Γ ( 1 + 1 2 n β ) ( Γ ( 1 + 1 2 β ) ) n .
29: 5.18 q -Gamma and q -Beta Functions
§5.18 q -Gamma and q -Beta Functions
Also, ln Γ q ( x ) is convex for x > 0 , and the analog of the Bohr–Mollerup theorem (§5.5(iv)) holds. … For the q -digamma or q -psi function ψ q ( z ) = Γ q ( z ) / Γ q ( z ) see Salem (2013).
§5.18(iii) q -Beta Function
For q -integrals see §17.2(v).
30: 13.27 Mathematical Applications
13.27.1 g = ( 1 α β 0 γ δ 0 0 1 ) ,
where α , β , γ , δ are real numbers, and γ > 0 . …The other group elements correspond to integral operators whose kernels can be expressed in terms of Whittaker functions. …