About the Project

Euler–Poisson–Darboux equation

AdvancedHelp

(0.003 seconds)

11—20 of 622 matching pages

11: 31.8 Solutions via Quadratures
§31.8 Solutions via Quadratures
the Hermite–Darboux method (see Whittaker and Watson (1927, pp. 570–572)) can be applied to construct solutions of (31.2.1) expressed in quadratures, as follows. … The variables λ and ν are two coordinates of the associated hyperelliptic (spectral) curve Γ : ν 2 = j = 1 2 g + 1 ( λ λ j ) . … The curve Γ reflects the finite-gap property of Equation (31.2.1) when the exponent parameters satisfy (31.8.1) for m j . …For more details see Smirnov (2002). …
12: 14.31 Other Applications
§14.31(i) Toroidal Functions
Applications of toroidal functions include expansion of vacuum magnetic fields in stellarators and tokamaks (van Milligen and López Fraguas (1994)), analytic solutions of Poisson’s equation in channel-like geometries (Hoyles et al. (1998)), and Dirichlet problems with toroidal symmetry (Gil et al. (2000)). …
§14.31(ii) Conical Functions
§14.31(iii) Miscellaneous
Many additional physical applications of Legendre polynomials and associated Legendre functions include solution of the Helmholtz equation, as well as the Laplace equation, in spherical coordinates (Temme (1996b)), quantum mechanics (Edmonds (1974)), and high-frequency scattering by a sphere (Nussenzveig (1965)). …
13: 1.15 Summability Methods
Poisson Kernel
Poisson Kernel
is the Poisson integral of f ( t ) . …
14: 18.18 Sums
§18.18(vii) Poisson Kernels
See (18.2.41) for the Poisson kernel in case of general OP’s.
Laguerre
Hermite
For the Poisson kernel of Jacobi polynomials (the Bailey formula) see Bailey (1938). …
15: Errata
  • Chapter 1 Additions

    The following additions were made in Chapter 1:

  • Rearrangement

    In previous versions of the DLMF, in §8.18(ii), the notation Γ ~ ( z ) was used for the scaled gamma function Γ ( z ) . Now in §8.18(ii), we adopt the notation which was introduced in Version 1.1.7 (October 15, 2022) and correspondingly, Equation (8.18.13) has been removed. In place of Equation (8.18.13), it is now mentioned to see (5.11.3).

  • Equation (8.18.3)
    8.18.3 I x ( a , b ) = Γ ( a + b ) Γ ( a ) ( k = 0 n 1 d k F k + O ( a n ) F 0 )

    The range of x was extended to include 1 . Previously this equation appeared without the order estimate as I x ( a , b ) Γ ( a + b ) Γ ( a ) k = 0 d k F k .

    Reported 2016-08-30 by Xinrong Ma.

  • Equation (5.11.8)

    It was reported by Nico Temme on 2015-02-28 that the asymptotic formula for Ln Γ ( z + h ) is valid for h ( ) ; originally it was unnecessarily restricted to [ 0 , 1 ] .

  • Equation (17.13.3)
    17.13.3 0 t α 1 ( t q α + β ; q ) ( t ; q ) d t = Γ ( α ) Γ ( 1 α ) Γ q ( β ) Γ q ( 1 α ) Γ q ( α + β )

    Originally the differential was identified incorrectly as d q t ; the correct differential is d t .

    Reported 2011-04-08.

  • 16: Bibliography T
  • S. A. Teukolsky (1972) Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations. Phys. Rev. Lett. 29 (16), pp. 1114–1118.
  • E. C. Titchmarsh (1958) Eigenfunction Expansions Associated with Second Order Differential Equations, Part 2, Partial Differential Equations. Clarendon Press, Oxford.
  • P. G. Todorov (1991) Explicit formulas for the Bernoulli and Euler polynomials and numbers. Abh. Math. Sem. Univ. Hamburg 61, pp. 175–180.
  • P. G. Todorov (1978) Une nouvelle représentation explicite des nombres d’Euler. C. R. Acad. Sci. Paris Sér. A-B 286 (19), pp. A807–A809.
  • C. A. Tracy and H. Widom (1997) On exact solutions to the cylindrical Poisson-Boltzmann equation with applications to polyelectrolytes. Phys. A 244 (1-4), pp. 402–413.
  • 17: Bibliography H
  • G. H. Hardy (1912) Note on Dr. Vacca’s series for γ . Quart. J. Math. 43, pp. 215–216.
  • M. Hauss (1997) An Euler-Maclaurin-type formula involving conjugate Bernoulli polynomials and an application to ζ ( 2 m + 1 ) . Commun. Appl. Anal. 1 (1), pp. 15–32.
  • M. Hauss (1998) A Boole-type Formula involving Conjugate Euler Polynomials. In Charlemagne and his Heritage. 1200 Years of Civilization and Science in Europe, Vol. 2 (Aachen, 1995), P.L. Butzer, H. Th. Jongen, and W. Oberschelp (Eds.), pp. 361–375.
  • F. T. Howard (1976) Roots of the Euler polynomials. Pacific J. Math. 64 (1), pp. 181–191.
  • M. Hoyles, S. Kuyucak, and S. Chung (1998) Solutions of Poisson’s equation in channel-like geometries. Comput. Phys. Comm. 115 (1), pp. 45–68.
  • 18: 16.15 Integral Representations and Integrals
    16.15.1 F 1 ( α ; β , β ; γ ; x , y ) = Γ ( γ ) Γ ( α ) Γ ( γ α ) 0 1 u α 1 ( 1 u ) γ α 1 ( 1 u x ) β ( 1 u y ) β d u , α > 0 , ( γ α ) > 0 ,
    16.15.2 F 2 ( α ; β , β ; γ , γ ; x , y ) = Γ ( γ ) Γ ( γ ) Γ ( β ) Γ ( β ) Γ ( γ β ) Γ ( γ β ) 0 1 0 1 u β 1 v β 1 ( 1 u ) γ β 1 ( 1 v ) γ β 1 ( 1 u x v y ) α d u d v , γ > β > 0 , γ > β > 0 ,
    16.15.3 F 3 ( α , α ; β , β ; γ ; x , y ) = Γ ( γ ) Γ ( β ) Γ ( β ) Γ ( γ β β ) Δ u β 1 v β 1 ( 1 u v ) γ β β 1 ( 1 u x ) α ( 1 v y ) α d u d v , ( γ β β ) > 0 , β > 0 , β > 0 ,
    16.15.4 F 4 ( α , β ; γ , γ ; x ( 1 y ) , y ( 1 x ) ) = Γ ( γ ) Γ ( γ ) Γ ( α ) Γ ( β ) Γ ( γ α ) Γ ( γ β ) 0 1 0 1 u α 1 v β 1 ( 1 u ) γ α 1 ( 1 v ) γ β 1 ( 1 u x ) γ + γ α 1 ( 1 v y ) γ + γ β 1 ( 1 u x v y ) α + β γ γ + 1 d u d v , γ > α > 0 , γ > β > 0 .
    19: Bibliography K
  • G. A. Kalugin, D. J. Jeffrey, and R. M. Corless (2012) Bernstein, Pick, Poisson and related integral expressions for Lambert W . Integral Transforms Spec. Funct. 23 (11), pp. 817–829.
  • S. H. Khamis (1965) Tables of the Incomplete Gamma Function Ratio: The Chi-square Integral, the Poisson Distribution. Justus von Liebig Verlag, Darmstadt (German, English).
  • D. E. Knuth and T. J. Buckholtz (1967) Computation of tangent, Euler, and Bernoulli numbers. Math. Comp. 21 (100), pp. 663–688.
  • Y. A. Kravtsov (1964) Asymptotic solution of Maxwell’s equations near caustics. Izv. Vuz. Radiofiz. 7, pp. 1049–1056.
  • M. D. Kruskal (1974) The Korteweg-de Vries Equation and Related Evolution Equations. In Nonlinear Wave Motion (Proc. AMS-SIAM Summer Sem., Clarkson Coll. Tech., Potsdam, N.Y., 1972), A. C. Newell (Ed.), Lectures in Appl. Math., Vol. 15, pp. 61–83.
  • 20: 30.1 Special Notation
    x real variable. Except in §§30.7(iv), 30.11(ii), 30.13, and 30.14, 1 < x < 1 .
    γ 2 real parameter (positive, zero, or negative).
    The main functions treated in this chapter are the eigenvalues λ n m ( γ 2 ) and the spheroidal wave functions 𝖯𝗌 n m ( x , γ 2 ) , 𝖰𝗌 n m ( x , γ 2 ) , 𝑃𝑠 n m ( z , γ 2 ) , 𝑄𝑠 n m ( z , γ 2 ) , and S n m ( j ) ( z , γ ) , j = 1 , 2 , 3 , 4 . …Meixner and Schäfke (1954) use ps , qs , Ps , Qs for 𝖯𝗌 , 𝖰𝗌 , 𝑃𝑠 , 𝑄𝑠 , respectively. … Flammer (1957) and Abramowitz and Stegun (1964) use λ m n ( γ ) for λ n m ( γ 2 ) + γ 2 , R m n ( j ) ( γ , z ) for S n m ( j ) ( z , γ ) , and …where d m n ( γ ) is a normalization constant determined by …