About the Project

Euler%E2%80%93Maclaurin

AdvancedHelp

(0.002 seconds)

21—30 of 413 matching pages

21: 30.5 Functions of the Second Kind
Other solutions of (30.2.1) with μ = m , λ = λ n m ( γ 2 ) , and z = x are
30.5.1 𝖰𝗌 n m ( x , γ 2 ) , n = m , m + 1 , m + 2 , .
30.5.2 𝖰𝗌 n m ( x , γ 2 ) = ( 1 ) n m + 1 𝖰𝗌 n m ( x , γ 2 ) ,
30.5.4 𝒲 { 𝖯𝗌 n m ( x , γ 2 ) , 𝖰𝗌 n m ( x , γ 2 ) } = ( n + m ) ! ( 1 x 2 ) ( n m ) ! A n m ( γ 2 ) A n m ( γ 2 ) ( 0 ) ,
with A n ± m ( γ 2 ) as in (30.11.4). …
22: 24.4 Basic Properties
§24.4(i) Difference Equations
§24.4(ii) Symmetry
§24.4(iii) Sums of Powers
§24.4(iv) Finite Expansions
Next, …
23: 16.16 Transformations of Variables
16.16.5 F 3 ( α , γ α ; β , γ β ; γ ; x , y ) = ( 1 y ) α + β γ F 1 2 ( α , β γ ; x + y x y ) ,
16.16.5_5 F 4 ( α , β ; γ , β ; x ( 1 y ) , y ( 1 x ) ) = ( 1 x ) α ( 1 y ) α F 1 ( α ; γ β , α γ + 1 ; γ ; x x 1 , x y ( 1 x ) ( 1 y ) ) ,
16.16.7 F 4 ( α , β ; γ , γ ; x ( 1 y ) , y ( 1 x ) ) = k = 0 ( α ) k ( β ) k ( α + β γ γ + 1 ) k ( γ ) k ( γ ) k k ! x k y k F 1 2 ( α + k , β + k γ + k ; x ) F 1 2 ( α + k , β + k γ + k ; y ) ;
16.16.9 F 2 ( α ; β , β ; γ , γ ; x , y ) = ( 1 x ) α F 2 ( α ; γ β , β ; γ , γ ; x x 1 , y 1 x ) ,
16.16.10 F 4 ( α , β ; γ , γ ; x , y ) = Γ ( γ ) Γ ( β α ) Γ ( γ α ) Γ ( β ) ( y ) α F 4 ( α , α γ + 1 ; γ , α β + 1 ; x y , 1 y ) + Γ ( γ ) Γ ( α β ) Γ ( γ β ) Γ ( α ) ( y ) β F 4 ( β , β γ + 1 ; γ , β α + 1 ; x y , 1 y ) .
24: 5.13 Integrals
5.13.1 1 2 π i c i c + i Γ ( s + a ) Γ ( b s ) z s d s = Γ ( a + b ) z a ( 1 + z ) a + b , ( a + b ) > 0 , a < c < b , | ph z | < π .
5.13.2 1 2 π | Γ ( a + i t ) | 2 e ( 2 b π ) t d t = Γ ( 2 a ) ( 2 sin b ) 2 a , a > 0 , 0 < b < π .
5.13.3 1 2 π Γ ( a + i t ) Γ ( b + i t ) Γ ( c i t ) Γ ( d i t ) d t = Γ ( a + c ) Γ ( a + d ) Γ ( b + c ) Γ ( b + d ) Γ ( a + b + c + d ) , a , b , c , d > 0 .
5.13.4 d t Γ ( a + t ) Γ ( b + t ) Γ ( c t ) Γ ( d t ) = Γ ( a + b + c + d 3 ) Γ ( a + c 1 ) Γ ( a + d 1 ) Γ ( b + c 1 ) Γ ( b + d 1 ) , ( a + b + c + d ) > 3 .
5.13.5 1 4 π k = 1 4 Γ ( a k + i t ) Γ ( a k i t ) Γ ( 2 i t ) Γ ( 2 i t ) d t = 1 j < k 4 Γ ( a j + a k ) Γ ( a 1 + a 2 + a 3 + a 4 ) , ( a k ) > 0 , k = 1 , 2 , 3 , 4 .
25: 32.8 Rational Solutions
In the general case assume γ δ 0 , so that as in §32.2(ii) we may set γ = 1 and δ = 1 . …
  • (a)

    α = 1 2 ( m + ε γ ) 2 and β = 1 2 n 2 , where n > 0 , m + n is odd, and α 0 when | m | < n .

  • (c)

    α = 1 2 a 2 , β = 1 2 ( a + n ) 2 , and γ = m , with m + n even.

  • (d)

    α = 1 2 ( b + n ) 2 , β = 1 2 b 2 , and γ = m , with m + n even.

  • (e)

    α = 1 8 ( 2 m + 1 ) 2 , β = 1 8 ( 2 n + 1 ) 2 , and γ .

  • 26: 5.22 Tables
    Abramowitz and Stegun (1964, Chapter 6) tabulates Γ ( x ) , ln Γ ( x ) , ψ ( x ) , and ψ ( x ) for x = 1 ( .005 ) 2 to 10D; ψ ′′ ( x ) and ψ ( 3 ) ( x ) for x = 1 ( .01 ) 2 to 10D; Γ ( n ) , 1 / Γ ( n ) , Γ ( n + 1 2 ) , ψ ( n ) , log 10 Γ ( n ) , log 10 Γ ( n + 1 3 ) , log 10 Γ ( n + 1 2 ) , and log 10 Γ ( n + 2 3 ) for n = 1 ( 1 ) 101 to 8–11S; Γ ( n + 1 ) for n = 100 ( 100 ) 1000 to 20S. Zhang and Jin (1996, pp. 67–69 and 72) tabulates Γ ( x ) , 1 / Γ ( x ) , Γ ( x ) , ln Γ ( x ) , ψ ( x ) , ψ ( x ) , ψ ( x ) , and ψ ( x ) for x = 0 ( .1 ) 5 to 8D or 8S; Γ ( n + 1 ) for n = 0 ( 1 ) 100 ( 10 ) 250 ( 50 ) 500 ( 100 ) 3000 to 51S. … Abramov (1960) tabulates ln Γ ( x + i y ) for x = 1 ( .01 ) 2 , y = 0 ( .01 ) 4 to 6D. Abramowitz and Stegun (1964, Chapter 6) tabulates ln Γ ( x + i y ) for x = 1 ( .1 ) 2 , y = 0 ( .1 ) 10 to 12D. …Zhang and Jin (1996, pp. 70, 71, and 73) tabulates the real and imaginary parts of Γ ( x + i y ) , ln Γ ( x + i y ) , and ψ ( x + i y ) for x = 0.5 , 1 , 5 , 10 , y = 0 ( .5 ) 10 to 8S.
    27: 18.17 Integrals
    18.17.14 x α + μ L n ( α + μ ) ( x ) Γ ( α + μ + n + 1 ) = 0 x y α L n ( α ) ( y ) Γ ( α + n + 1 ) ( x y ) μ 1 Γ ( μ ) d y , μ > 0 , x > 0 .
    For the beta function B ( a , b ) see §5.12, and for the confluent hypergeometric function F 1 1 see (16.2.1) and Chapter 13. …
    18.17.16_5 1 1 ( 1 x 2 ) λ 1 2 C n ( λ ) ( x ) e i x y d x = 2 π i n Γ ( n + 2 λ ) J n + λ ( y ) n ! Γ ( λ ) ( 2 y ) λ ,
    18.17.17 0 1 ( 1 x 2 ) λ 1 2 C 2 n ( λ ) ( x ) cos ( x y ) d x = ( 1 ) n π Γ ( 2 n + 2 λ ) J λ + 2 n ( y ) ( 2 n ) ! Γ ( λ ) ( 2 y ) λ ,
    18.17.37 0 1 ( 1 x 2 ) λ 1 2 C n ( λ ) ( x ) x z 1 d x = π  2 1 2 λ z Γ ( n + 2 λ ) Γ ( z ) n ! Γ ( λ ) Γ ( 1 2 + 1 2 n + λ + 1 2 z ) Γ ( 1 2 + 1 2 z 1 2 n ) , z > 0 .
    28: 30.6 Functions of Complex Argument
    The solutions
    𝑃𝑠 n m ( z , γ 2 ) ,
    𝑄𝑠 n m ( z , γ 2 ) ,
    of (30.2.1) with μ = m and λ = λ n m ( γ 2 ) are real when z ( 1 , ) , and their principal values (§4.2(i)) are obtained by analytic continuation to ( , 1 ] . … with A n ± m ( γ 2 ) as in (30.11.4). …
    29: 8.8 Recurrence Relations and Derivatives
    8.8.1 γ ( a + 1 , z ) = a γ ( a , z ) z a e z ,
    If w ( a , z ) = γ ( a , z ) or Γ ( a , z ) , then …
    8.8.4 z γ ( a + 1 , z ) = γ ( a , z ) e z Γ ( a + 1 ) .
    8.8.8 γ ( a , z ) = Γ ( a ) Γ ( a n ) γ ( a n , z ) z a 1 e z k = 0 n 1 Γ ( a ) Γ ( a k ) z k ,
    8.8.10 Γ ( a , z ) = Γ ( a ) Γ ( a n ) Γ ( a n , z ) + z a 1 e z k = 0 n 1 Γ ( a ) Γ ( a k ) z k ,
    30: 24.2 Definitions and Generating Functions
    §24.2(ii) Euler Numbers and Polynomials
    §24.2(iii) Periodic Bernoulli and Euler Functions
    Table 24.2.1: Bernoulli and Euler numbers.
    n B n E n
    Table 24.2.2: Bernoulli and Euler polynomials.
    n B n ( x ) E n ( x )