About the Project

Euler%E2%80%93Maclaurin%20formula

AdvancedHelp

(0.003 seconds)

21—30 of 562 matching pages

21: 15.11 Riemann’s Differential Equation
The most general form is given by … Here { a 1 , a 2 } , { b 1 , b 2 } , { c 1 , c 2 } are the exponent pairs at the points α , β , γ , respectively. …Also, if any of α , β , γ , is at infinity, then we take the corresponding limit in (15.11.1). …
§15.11(ii) Transformation Formulas
These constants can be chosen to map any two sets of three distinct points { α , β , γ } and { α ~ , β ~ , γ ~ } onto each other. …
22: Bibliography K
  • K. W. J. Kadell (1994) A proof of the q -Macdonald-Morris conjecture for B C n . Mem. Amer. Math. Soc. 108 (516), pp. vi+80.
  • E. H. Kaufman and T. D. Lenker (1986) Linear convergence and the bisection algorithm. Amer. Math. Monthly 93 (1), pp. 48–51.
  • R. P. Kelisky (1957) On formulas involving both the Bernoulli and Fibonacci numbers. Scripta Math. 23, pp. 27–35.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • D. E. Knuth and T. J. Buckholtz (1967) Computation of tangent, Euler, and Bernoulli numbers. Math. Comp. 21 (100), pp. 663–688.
  • 23: 15.10 Hypergeometric Differential Equation
    §15.10(ii) Kummer’s 24 Solutions and Connection Formulas
    The ( 6 3 ) = 20 connection formulas for the principal branches of Kummer’s solutions are:
    15.10.17 w 3 ( z ) = Γ ( 1 c ) Γ ( a + b c + 1 ) Γ ( a c + 1 ) Γ ( b c + 1 ) w 1 ( z ) + Γ ( c 1 ) Γ ( a + b c + 1 ) Γ ( a ) Γ ( b ) w 2 ( z ) ,
    15.10.21 w 1 ( z ) = Γ ( c ) Γ ( c a b ) Γ ( c a ) Γ ( c b ) w 3 ( z ) + Γ ( c ) Γ ( a + b c ) Γ ( a ) Γ ( b ) w 4 ( z ) ,
    15.10.25 w 1 ( z ) = Γ ( c ) Γ ( b a ) Γ ( b ) Γ ( c a ) w 5 ( z ) + Γ ( c ) Γ ( a b ) Γ ( a ) Γ ( c b ) w 6 ( z ) ,
    24: 25.2 Definition and Expansions
    where the Stieltjes constants γ n are defined via …
    §25.2(iii) Representations by the EulerMaclaurin Formula
    25.2.8 ζ ( s ) = k = 1 N 1 k s + N 1 s s 1 s N x x x s + 1 d x , s > 0 , N = 1 , 2 , 3 , .
    25.2.10 ζ ( s ) = 1 s 1 + 1 2 + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k ( s + 2 n 2 n + 1 ) 1 B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n , n = 1 , 2 , 3 , .
    product over zeros ρ of ζ with ρ > 0 (see §25.10(i)); γ is Euler’s constant (§5.2(ii)).
    25: 30.9 Asymptotic Approximations and Expansions
    §30.9(i) Prolate Spheroidal Wave Functions
    As γ 2 + , with q = 2 ( n m ) + 1 , … The asymptotic behavior of λ n m ( γ 2 ) and a n , k m ( γ 2 ) as n in descending powers of 2 n + 1 is derived in Meixner (1944). …The asymptotic behavior of 𝖯𝗌 n m ( x , γ 2 ) and 𝖰𝗌 n m ( x , γ 2 ) as x ± 1 is given in Erdélyi et al. (1955, p. 151). The behavior of λ n m ( γ 2 ) for complex γ 2 and large | λ n m ( γ 2 ) | is investigated in Hunter and Guerrieri (1982). …
    26: 24.18 Physical Applications
    §24.18 Physical Applications
    Bernoulli polynomials appear in statistical physics (Ordóñez and Driebe (1996)), in discussions of Casimir forces (Li et al. (1991)), and in a study of quark-gluon plasma (Meisinger et al. (2002)). Euler polynomials also appear in statistical physics as well as in semi-classical approximations to quantum probability distributions (Ballentine and McRae (1998)).
    27: 32.8 Rational Solutions
    In the general case assume γ δ 0 , so that as in §32.2(ii) we may set γ = 1 and δ = 1 . …
  • (a)

    α = 1 2 ( m + ε γ ) 2 and β = 1 2 n 2 , where n > 0 , m + n is odd, and α 0 when | m | < n .

  • (c)

    α = 1 2 a 2 , β = 1 2 ( a + n ) 2 , and γ = m , with m + n even.

  • (d)

    α = 1 2 ( b + n ) 2 , β = 1 2 b 2 , and γ = m , with m + n even.

  • (e)

    α = 1 8 ( 2 m + 1 ) 2 , β = 1 8 ( 2 n + 1 ) 2 , and γ .

  • 28: 5.5 Functional Relations
    §5.5(ii) Reflection
    §5.5(iii) Multiplication
    Duplication Formula
    Gauss’s Multiplication Formula
    If a positive function f ( x ) on ( 0 , ) satisfies f ( x + 1 ) = x f ( x ) , f ( 1 ) = 1 , and ln f ( x ) is convex (see §1.4(viii)), then f ( x ) = Γ ( x ) .
    29: 24.20 Tables
    §24.20 Tables
    Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. …
    30: 12.12 Integrals
    12.12.1 0 e 1 4 t 2 t μ 1 U ( a , t ) d t = π 2 1 2 ( μ + a + 1 2 ) Γ ( μ ) Γ ( 1 2 ( μ + a + 3 2 ) ) , μ > 0 ,
    12.12.2 0 e 3 4 t 2 t a 3 2 U ( a , t ) d t = 2 1 4 + 1 2 a Γ ( a 1 2 ) cos ( ( 1 4 a + 1 8 ) π ) , a < 1 2 ,
    12.12.3 0 e 1 4 t 2 t a 1 2 ( x 2 + t 2 ) 1 U ( a , t ) d t = π / 2 Γ ( 1 2 a ) x a 3 2 e 1 4 x 2 U ( a , x ) , a < 1 2 , x > 0 .
    12.12.4 ( U ( a , z ) ) 2 + ( U ¯ ( a , z ) ) 2 = 2 3 2 π Γ ( 1 2 a ) 0 e 2 a t + 1 2 z 2 tanh t sinh ( 2 t ) d t , a < 1 2 .
    For compendia of integrals see Erdélyi et al. (1953b, v. 2, pp. 121–122), Erdélyi et al. (1954a, b, v. 1, pp. 60–61, 115, 210–211, and 336; v. 2, pp. 76–80, 115, 151, 171, and 395–398), Gradshteyn and Ryzhik (2000, §7.7), Magnus et al. (1966, pp. 330–331), Marichev (1983, pp. 190–191), Oberhettinger (1974, pp. 144–145), Oberhettinger (1990, pp. 106–108 and 192), Oberhettinger and Badii (1973, pp. 181–185), Prudnikov et al. (1986b, pp. 36–37, 155–168, 243–246, 289–290, 327–328, 419–420, and 619), Prudnikov et al. (1992a, §3.11), and Prudnikov et al. (1992b, §3.11). …