About the Project

Chester%E2%80%93Friedman%E2%80%93Ursell%20method

AdvancedHelp

(0.004 seconds)

11—20 of 247 matching pages

11: Bibliography K
  • K. W. J. Kadell (1994) A proof of the q -Macdonald-Morris conjecture for B C n . Mem. Amer. Math. Soc. 108 (516), pp. vi+80.
  • D. K. Kahaner, C. Moler, and S. Nash (1989) Numerical Methods and Software. Prentice Hall, Englewood Cliffs, N.J..
  • E. H. Kaufman and T. D. Lenker (1986) Linear convergence and the bisection algorithm. Amer. Math. Monthly 93 (1), pp. 48–51.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • A. D. Kerr (1978) An indirect method for evaluating certain infinite integrals. Z. Angew. Math. Phys. 29 (3), pp. 380–386.
  • 12: 32.8 Rational Solutions
    32.8.3 w ( z ; 3 ) = 3 z 2 z 3 + 4 6 z 2 ( z 3 + 10 ) z 6 + 20 z 3 80 ,
    32.8.4 w ( z ; 4 ) = 1 z + 6 z 2 ( z 3 + 10 ) z 6 + 20 z 3 80 9 z 5 ( z 3 + 40 ) z 9 + 60 z 6 + 11200 .
    Q 3 ( z ) = z 6 + 20 z 3 80 ,
    13: 26.13 Permutations: Cycle Notation
    14: Bibliography J
  • H. Jeffreys and B. S. Jeffreys (1956) Methods of Mathematical Physics. 3rd edition, Cambridge University Press, Cambridge.
  • M. Jimbo, T. Miwa, Y. Môri, and M. Sato (1980) Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Phys. D 1 (1), pp. 80–158.
  • D. S. Jones (2001) Asymptotics of the hypergeometric function. Math. Methods Appl. Sci. 24 (6), pp. 369–389.
  • B. R. Judd (1976) Modifications of Coulombic interactions by polarizable atoms. Math. Proc. Cambridge Philos. Soc. 80 (3), pp. 535–539.
  • 15: 26.6 Other Lattice Path Numbers
    Table 26.6.1: Delannoy numbers D ( m , n ) .
    m n
    10 1 21 221 1561 8361 36365 1 34245 4 33905 12 56465 33 17445 80 97453
    Table 26.6.3: Narayana numbers N ( n , k ) .
    n k
    5 0 1 10 20 10 1
    16: 10.34 Analytic Continuation
    17: 12.12 Integrals
    For compendia of integrals see Erdélyi et al. (1953b, v. 2, pp. 121–122), Erdélyi et al. (1954a, b, v. 1, pp. 60–61, 115, 210–211, and 336; v. 2, pp. 76–80, 115, 151, 171, and 395–398), Gradshteyn and Ryzhik (2000, §7.7), Magnus et al. (1966, pp. 330–331), Marichev (1983, pp. 190–191), Oberhettinger (1974, pp. 144–145), Oberhettinger (1990, pp. 106–108 and 192), Oberhettinger and Badii (1973, pp. 181–185), Prudnikov et al. (1986b, pp. 36–37, 155–168, 243–246, 289–290, 327–328, 419–420, and 619), Prudnikov et al. (1992a, §3.11), and Prudnikov et al. (1992b, §3.11). …
    18: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • E. A. Bender (1974) Asymptotic methods in enumeration. SIAM Rev. 16 (4), pp. 485–515.
  • M. V. Berry and C. J. Howls (1994) Overlapping Stokes smoothings: Survival of the error function and canonical catastrophe integrals. Proc. Roy. Soc. London Ser. A 444, pp. 201–216.
  • I. Bloch, M. H. Hull, A. A. Broyles, W. G. Bouricius, B. E. Freeman, and G. Breit (1950) Methods of calculation of radial wave functions and new tables of Coulomb functions. Physical Rev. (2) 80, pp. 553–560.
  • P. F. Byrd and M. D. Friedman (1971) Handbook of Elliptic Integrals for Engineers and Scientists. 2nd edition, Die Grundlehren der mathematischen Wissenschaften, Band 67, Springer-Verlag, New York.
  • 19: Bibliography P
  • R. B. Paris (2004) Exactification of the method of steepest descents: The Bessel functions of large order and argument. Proc. Roy. Soc. London Ser. A 460, pp. 2737–2759.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • R. Piessens and M. Branders (1983) Modified Clenshaw-Curtis method for the computation of Bessel function integrals. BIT 23 (3), pp. 370–381.
  • T. Prellberg and A. L. Owczarek (1995) Stacking models of vesicles and compact clusters. J. Statist. Phys. 80 (3–4), pp. 755–779.
  • M. Puoskari (1988) A method for computing Bessel function integrals. J. Comput. Phys. 75 (2), pp. 334–344.
  • 20: 9.18 Tables
  • Miller (1946) tabulates Ai ( x ) , Ai ( x ) for x = 20 ( .01 ) 2 ; log 10 Ai ( x ) , Ai ( x ) / Ai ( x ) for x = 0 ( .1 ) 25 ( 1 ) 75 ; Bi ( x ) , Bi ( x ) for x = 10 ( .1 ) 2.5 ; log 10 Bi ( x ) , Bi ( x ) / Bi ( x ) for x = 0 ( .1 ) 10 ; M ( x ) , N ( x ) , θ ( x ) , ϕ ( x ) (respectively F ( x ) , G ( x ) , χ ( x ) , ψ ( x ) ) for x = 80 ( 1 ) 30 ( .1 ) 0 . Precision is generally 8D; slightly less for some of the auxiliary functions. Extracts from these tables are included in Abramowitz and Stegun (1964, Chapter 10), together with some auxiliary functions for large arguments.

  • Zhang and Jin (1996, p. 337) tabulates Ai ( x ) , Ai ( x ) , Bi ( x ) , Bi ( x ) for x = 0 ( 1 ) 20 to 8S and for x = 20 ( 1 ) 0 to 9D.

  • Miller (1946) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 . Precision is 8D. Entries for k = 1 ( 1 ) 20 are reproduced in Abramowitz and Stegun (1964, Chapter 10).

  • Sherry (1959) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; 20S.

  • Zhang and Jin (1996, p. 339) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 ; 8D.