About the Project

Chebyshev series

AdvancedHelp

(0.002 seconds)

21—30 of 34 matching pages

21: 18.40 Methods of Computation
For applications in which the OP’s appear only as terms in series expansions (compare §18.18(i)) the need to compute them can be avoided altogether by use instead of Clenshaw’s algorithm (§3.11(ii)) and its straightforward generalization to OP’s other than Chebyshev. … …
22: Bibliography M
  • G. F. Miller (1966) On the convergence of the Chebyshev series for functions possessing a singularity in the range of representation. SIAM J. Numer. Anal. 3 (3), pp. 390–409.
  • 23: 18.38 Mathematical Applications
    In consequence, expansions of functions that are infinitely differentiable on [ 1 , 1 ] in series of Chebyshev polynomials usually converge extremely rapidly. … Linear ordinary differential equations can be solved directly in series of Chebyshev polynomials (or other OP’s) by a method originated by Clenshaw (1957). …
    24: Bibliography O
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • 25: 18.18 Sums
    Chebyshev
    Chebyshev
    Legendre and Chebyshev
    26: 25.16 Mathematical Applications
    25.16.1 ψ ( x ) = m = 1 p m x ln p ,
    27: 18.2 General Orthogonal Polynomials
    This says roughly that the series (18.2.25) has the same pointwise convergence behavior as the same series with p n ( x ) = T n ( x ) , a Chebyshev polynomial of the first kind, see Table 18.3.1. …
    28: Bibliography S
  • L. Schoenfeld (1976) Sharper bounds for the Chebyshev functions θ ( x ) and ψ ( x ) . II. Math. Comp. 30 (134), pp. 337–360.
  • J. L. Schonfelder (1978) Chebyshev expansions for the error and related functions. Math. Comp. 32 (144), pp. 1232–1240.
  • J. L. Schonfelder (1980) Very high accuracy Chebyshev expansions for the basic trigonometric functions. Math. Comp. 34 (149), pp. 237–244.
  • M. M. Shepherd and J. G. Laframboise (1981) Chebyshev approximation of ( 1 + 2 x ) exp ( x 2 ) erfc x in 0 x < . Math. Comp. 36 (153), pp. 249–253.
  • S. K. Suslov (2003) An Introduction to Basic Fourier Series. Developments in Mathematics, Vol. 9, Kluwer Academic Publishers, Dordrecht.
  • 29: Bibliography W
  • H. Werner, J. Stoer, and W. Bommas (1967) Rational Chebyshev approximation. Numer. Math. 10 (4), pp. 289–306.
  • A. D. Wheelon (1968) Tables of Summable Series and Integrals Involving Bessel Functions. Holden-Day, San Francisco, CA.
  • F. J. W. Whipple (1927) Some transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 26 (2), pp. 257–272.
  • J. A. Wilson (1978) Hypergeometric Series, Recurrence Relations and Some New Orthogonal Polynomials. Ph.D. Thesis, University of Wisconsin, Madison, WI.
  • C. Y. Wu (1982) A series of inequalities for Mills’s ratio. Acta Math. Sinica 25 (6), pp. 660–670.
  • 30: Bibliography T
  • A. Takemura (1984) Zonal Polynomials. Institute of Mathematical Statistics Lecture Notes—Monograph Series, 4, Institute of Mathematical Statistics, Hayward, CA.
  • I. C. Tang (1969) Some definite integrals and Fourier series for Jacobian elliptic functions. Z. Angew. Math. Mech. 49, pp. 95–96.
  • G. P. Tolstov (1962) Fourier Series. Prentice-Hall Inc., Englewood Cliffs, N.J..
  • J. F. Traub (1964) Iterative Methods for the Solution of Equations. Prentice-Hall Series in Automatic Computation, Prentice-Hall Inc., Englewood Cliffs, N.J..
  • A. Trellakis, A. T. Galick, and U. Ravaioli (1997) Rational Chebyshev approximation for the Fermi-Dirac integral F 3 / 2 ( x ) . Solid–State Electronics 41 (5), pp. 771–773.