About the Project

Cauchy determinant

AdvancedHelp

(0.001 seconds)

11—20 of 68 matching pages

11: 32.10 Special Function Solutions
where τ n ( z ) is the n × n Wronskian determinantFor determinantal representations see Forrester and Witte (2002) and Okamoto (1987c). … For determinantal representations see Forrester and Witte (2001) and Okamoto (1986). … For determinantal representations see Forrester and Witte (2002), Masuda (2004), and Okamoto (1987b). … For determinantal representations see Forrester and Witte (2004) and Masuda (2004). …
12: 1.11 Zeros of Polynomials
D 2 = | a 1 a 3 a 0 a 2 | ,
D 3 = | a 1 a 3 a 5 a 0 a 2 a 4 0 a 1 a 3 | ,
1.11.26 D k = det [ h k ( 1 ) , h k ( 3 ) , , h k ( 2 k 1 ) ] ,
13: 4.10 Integrals
4.10.7 0 x d t ln t = li ( x ) , x > 1 .
The left-hand side of (4.10.7) is a Cauchy principal value (§1.4(v)). …
14: 35.1 Special Notation
a , b complex variables.
| 𝐗 | determinant of 𝐗 (except when m = 1 where it means either determinant or absolute value, depending on the context).
15: 35.3 Multivariate Gamma and Beta Functions
35.3.2 Γ m ( s 1 , , s m ) = 𝛀 etr ( 𝐗 ) | 𝐗 | s m 1 2 ( m + 1 ) j = 1 m 1 | ( 𝐗 ) j | s j s j + 1 d 𝐗 , s j , ( s j ) > 1 2 ( j 1 ) , j = 1 , , m .
35.3.3 B m ( a , b ) = 𝟎 < 𝐗 < 𝐈 | 𝐗 | a 1 2 ( m + 1 ) | 𝐈 𝐗 | b 1 2 ( m + 1 ) d 𝐗 , ( a ) , ( b ) > 1 2 ( m 1 ) .
16: 22.8 Addition Theorems
22.8.20 | sn z 1 cn z 1 dn z 1 1 sn z 2 cn z 2 dn z 2 1 sn z 3 cn z 3 dn z 3 1 sn z 4 cn z 4 dn z 4 1 | = 0 ,
22.8.23 | sn z 1 cn z 1 cn z 1 dn z 1 cn z 1 dn z 1 sn z 2 cn z 2 cn z 2 dn z 2 cn z 2 dn z 2 sn z 3 cn z 3 cn z 3 dn z 3 cn z 3 dn z 3 sn z 4 cn z 4 cn z 4 dn z 4 cn z 4 dn z 4 | = 0 .
17: 19.3 Graphics
See accompanying text
Figure 19.3.2: R C ( x , 1 ) and the Cauchy principal value of R C ( x , 1 ) for 0 x 5 . … Magnify
See accompanying text
Figure 19.3.5: Π ( α 2 , k ) as a function of k 2 and α 2 for 2 k 2 < 1 , 2 α 2 2 . Cauchy principal values are shown when α 2 > 1 . … Magnify 3D Help
See accompanying text
Figure 19.3.6: Π ( ϕ , 2 , k ) as a function of k 2 and sin 2 ϕ for 1 k 2 3 , 0 sin 2 ϕ < 1 . Cauchy principal values are shown when sin 2 ϕ > 1 2 . …If sin 2 ϕ = 1 ( > k 2 ), then the function reduces to Π ( 2 , k ) with Cauchy principal value K ( k ) Π ( 1 2 k 2 , k ) , which tends to as k 2 1 . …If sin 2 ϕ = 1 / k 2 ( < 1 ), then by (19.7.4) it reduces to Π ( 2 / k 2 , 1 / k ) / k , k 2 2 , with Cauchy principal value ( K ( 1 / k ) Π ( 1 2 , 1 / k ) ) / k , 1 < k 2 < 2 , by (19.6.5). … Magnify 3D Help
18: 35.5 Bessel Functions of Matrix Argument
35.5.3 B ν ( 𝐓 ) = 𝛀 etr ( ( 𝐓 𝐗 + 𝐗 1 ) ) | 𝐗 | ν 1 2 ( m + 1 ) d 𝐗 , ν , 𝐓 𝛀 .
35.5.5 𝟎 < 𝐗 < 𝐓 A ν 1 ( 𝐒 1 𝐗 ) | 𝐗 | ν 1 A ν 2 ( 𝐒 2 ( 𝐓 𝐗 ) ) | 𝐓 𝐗 | ν 2 d 𝐗 = | 𝐓 | ν 1 + ν 2 + 1 2 ( m + 1 ) A ν 1 + ν 2 + 1 2 ( m + 1 ) ( ( 𝐒 1 + 𝐒 2 ) 𝐓 ) , ν j , ( ν j ) > 1 , j = 1 , 2 ; 𝐒 1 , 𝐒 2 𝓢 ; 𝐓 𝛀 .
35.5.7 𝛀 A ν 1 ( 𝐓 𝐗 ) B ν 2 ( 𝐒 𝐗 ) | 𝐗 | ν 1 d 𝐗 = 1 A ν 1 + ν 2 ( 𝟎 ) | 𝐒 | ν 2 | 𝐓 + 𝐒 | ( ν 1 + ν 2 + 1 2 ( m + 1 ) ) , ( ν 1 + ν 2 ) > 1 ; 𝐒 , 𝐓 𝛀 .
19: 1.9 Calculus of a Complex Variable
Cauchy–Riemann Equations
Cauchy’s Theorem
Cauchy’s Integral Formula
20: 1.4 Calculus of One Variable
Cauchy Principal Values
1.4.24 a b f ( x ) d x = 𝑃 a b f ( x ) d x = lim ϵ 0 + ( a c ϵ f ( x ) d x + c + ϵ b f ( x ) d x ) ,
1.4.25 f ( x ) d x = 𝑃 f ( x ) d x = lim b b b f ( x ) d x ,