About the Project

Bernoulli and Euler numbers and polynomials

AdvancedHelp

(0.004 seconds)

21—30 of 42 matching pages

21: Bibliography W
  • S. S. Wagstaff (2002) Prime Divisors of the Bernoulli and Euler Numbers. In Number Theory for the Millennium, III (Urbana, IL, 2000), pp. 357–374.
  • P. L. Walker (2007) The zeros of Euler’s psi function and its derivatives. J. Math. Anal. Appl. 332 (1), pp. 607–616.
  • X.-S. Wang and R. Wong (2011) Global asymptotics of the Meixner polynomials. Asymptotic Analysis 75 (3-4), pp. 211–231.
  • G. N. Watson (1935a) Generating functions of class-numbers. Compositio Math. 1, pp. 39–68.
  • J. A. Wilson (1978) Hypergeometric Series, Recurrence Relations and Some New Orthogonal Polynomials. Ph.D. Thesis, University of Wisconsin, Madison, WI.
  • 22: Bibliography L
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • D. J. Leeming (1989) The real zeros of the Bernoulli polynomials. J. Approx. Theory 58 (2), pp. 124–150.
  • J. L. López and N. M. Temme (1999b) Hermite polynomials in asymptotic representations of generalized Bernoulli, Euler, Bessel, and Buchholz polynomials. J. Math. Anal. Appl. 239 (2), pp. 457–477.
  • J. L. López and N. M. Temme (1999c) Uniform approximations of Bernoulli and Euler polynomials in terms of hyperbolic functions. Stud. Appl. Math. 103 (3), pp. 241–258.
  • J. L. López and N. M. Temme (2010b) Large degree asymptotics of generalized Bernoulli and Euler polynomials. J. Math. Anal. Appl. 363 (1), pp. 197–208.
  • 23: 2.10 Sums and Sequences
    §2.10(i) Euler–Maclaurin Formula
    As in §24.2, let B n and B n ( x ) denote the n th Bernoulli number and polynomial, respectively, and B ~ n ( x ) the n th Bernoulli periodic function B n ( x x ) . … This is the Euler–Maclaurin formula. … From §24.12(i), (24.2.2), and (24.4.27), B ~ 2 m ( x ) B 2 m is of constant sign ( 1 ) m . …
    Example
    24: Bibliography C
  • L. Carlitz (1953) Some congruences for the Bernoulli numbers. Amer. J. Math. 75 (1), pp. 163–172.
  • L. Carlitz (1954a) q -Bernoulli and Eulerian numbers. Trans. Amer. Math. Soc. 76 (2), pp. 332–350.
  • L. Carlitz (1954b) A note on Euler numbers and polynomials. Nagoya Math. J. 7, pp. 35–43.
  • L. Carlitz (1958) Expansions of q -Bernoulli numbers. Duke Math. J. 25 (2), pp. 355–364.
  • M. Chellali (1988) Accélération de calcul de nombres de Bernoulli. J. Number Theory 28 (3), pp. 347–362 (French).
  • 25: 25.11 Hurwitz Zeta Function
    25.11.6 ζ ( s , a ) = 1 a s ( 1 2 + a s 1 ) s ( s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s 1 , s > 1 , a > 0 .
    25.11.7 ζ ( s , a ) = 1 a s + 1 ( 1 + a ) s ( 1 2 + 1 + a s 1 ) + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k 1 ( 1 + a ) s + 2 k 1 ( s + 2 n 2 n + 1 ) 1 B ~ 2 n + 1 ( x ) ( x + a ) s + 2 n + 1 d x , s 1 , a > 0 , n = 1 , 2 , 3 , , s > 2 n .
    26: 25.1 Special Notation
    k , m , n nonnegative integers.
    p prime number.
    γ Euler’s constant (§5.2(ii)).
    ψ ( x ) digamma function Γ ( x ) / Γ ( x ) except in §25.16. See §5.2(i).
    B n , B n ( x ) Bernoulli number and polynomial24.2(i)).
    B ~ n ( x ) periodic Bernoulli function B n ( x x ) .
    27: Bibliography T
  • P. G. Todorov (1991) Explicit formulas for the Bernoulli and Euler polynomials and numbers. Abh. Math. Sem. Univ. Hamburg 61, pp. 175–180.
  • 28: Bibliography K
  • M. Kaneko (1997) Poly-Bernoulli numbers. J. Théor. Nombres Bordeaux 9 (1), pp. 221–228.
  • N. M. Katz (1975) The congruences of Clausen-von Staudt and Kummer for Bernoulli-Hurwitz numbers. Math. Ann. 216 (1), pp. 1–4.
  • R. P. Kelisky (1957) On formulas involving both the Bernoulli and Fibonacci numbers. Scripta Math. 23, pp. 27–35.
  • T. Kim and H. S. Kim (1999) Remark on p -adic q -Bernoulli numbers. Adv. Stud. Contemp. Math. (Pusan) 1, pp. 127–136.
  • D. E. Knuth and T. J. Buckholtz (1967) Computation of tangent, Euler, and Bernoulli numbers. Math. Comp. 21 (100), pp. 663–688.
  • 29: Bibliography
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • A. Adelberg (1996) Congruences of p -adic integer order Bernoulli numbers. J. Number Theory 59 (2), pp. 374–388.
  • W. A. Al-Salam and L. Carlitz (1959) Some determinants of Bernoulli, Euler and related numbers. Portugal. Math. 18, pp. 91–99.
  • H. Alzer (2000) Sharp bounds for the Bernoulli numbers. Arch. Math. (Basel) 74 (3), pp. 207–211.
  • T. M. Apostol (2008) A primer on Bernoulli numbers and polynomials. Math. Mag. 81 (3), pp. 178–190.
  • 30: Karl Dilcher
    Dilcher’s research interests include classical analysis, special functions, and elementary, combinatorial, and computational number theory. Over the years he authored or coauthored numerous papers on Bernoulli numbers and related topics, and he maintains a large on-line bibliography on the subject. …