About the Project

.02%E5%B9%B4%E4%B8%96%E7%95%8C%E6%9D%AF%E6%B2%99%E7%89%B9%E5%B0%8F%E7%BB%84%E8%B5%9B%E3%80%8E%E7%BD%91%E5%9D%80%3Amxsty.cc%E3%80%8F.%E4%B8%96%E7%95%8C%E6%9D%AF%E8%B6%B3%E5%BD%A9%E7%8E%A9%E6%B3%95%E8%A7%84%E5%88%99.m6q3s2-oeoo02w0g

AdvancedHelp

(0.042 seconds)

11—20 of 737 matching pages

11: 26.5 Lattice Paths: Catalan Numbers
C ( n ) is the Catalan number. …(Sixty-six equivalent definitions of C ( n ) are given in Stanley (1999, pp. 219–229).) …
26.5.3 C ( n + 1 ) = k = 0 n C ( k ) C ( n k ) ,
26.5.4 C ( n + 1 ) = 2 ( 2 n + 1 ) n + 2 C ( n ) ,
26.5.7 lim n C ( n + 1 ) C ( n ) = 4 .
12: Bibliography H
  • P. I. Hadži (1975a) Certain integrals that contain a probability function. Bul. Akad. Štiince RSS Moldoven. 1975 (2), pp. 86–88, 95 (Russian).
  • P. I. Hadži (1976a) Expansions for the probability function in series of Čebyšev polynomials and Bessel functions. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 77–80, 96 (Russian).
  • P. I. Hadži (1976b) Integrals that contain a probability function of complicated arguments. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 8084, 96 (Russian).
  • P. I. Hadži (1978) Sums with cylindrical functions that reduce to the probability function and to related functions. Bul. Akad. Shtiintse RSS Moldoven. 1978 (3), pp. 8084, 95 (Russian).
  • J. Hammack, D. McCallister, N. Scheffner, and H. Segur (1995) Two-dimensional periodic waves in shallow water. II. Asymmetric waves. J. Fluid Mech. 285, pp. 95–122.
  • 13: Bibliography T
  • I. C. Tang (1969) Some definite integrals and Fourier series for Jacobian elliptic functions. Z. Angew. Math. Mech. 49, pp. 9596.
  • N. M. Temme (1994a) A set of algorithms for the incomplete gamma functions. Probab. Engrg. Inform. Sci. 8, pp. 291–307.
  • N. M. Temme (1995b) Bernoulli polynomials old and new: Generalizations and asymptotics. CWI Quarterly 8 (1), pp. 47–66.
  • P. Terwilliger (2013) The universal Askey-Wilson algebra and DAHA of type ( C 1 , C 1 ) . SIGMA 9, pp. Paper 047, 40 pp..
  • J. Todd (1975) The lemniscate constants. Comm. ACM 18 (1), pp. 14–19.
  • 14: 33.20 Expansions for Small | ϵ |
    where
    33.20.4 𝖥 k ( ; r ) = p = 2 k 3 k ( 2 r ) ( p + 1 ) / 2 C k , p J 2 + 1 + p ( 8 r ) , r > 0 ,
    33.20.5 𝖥 k ( ; r ) = p = 2 k 3 k ( 1 ) + 1 + p ( 2 | r | ) ( p + 1 ) / 2 C k , p I 2 + 1 + p ( 8 | r | ) , r < 0 .
    The functions J and I are as in §§10.2(ii), 10.25(ii), and the coefficients C k , p are given by C 0 , 0 = 1 , C 1 , 0 = 0 , and … The functions Y and K are as in §§10.2(ii), 10.25(ii), and the coefficients C k , p are given by (33.20.6). …
    15: Bibliography
  • M. Abramowitz and P. Rabinowitz (1954) Evaluation of Coulomb wave functions along the transition line. Physical Rev. (2) 96, pp. 77–79.
  • H. Airault, H. P. McKean, and J. Moser (1977) Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem. Comm. Pure Appl. Math. 30 (1), pp. 95–148.
  • G. Almkvist and B. Berndt (1988) Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, π , and the Ladies Diary. Amer. Math. Monthly 95 (7), pp. 585–608.
  • G. E. Andrews and D. Foata (1980) Congruences for the q -secant numbers. European J. Combin. 1 (4), pp. 283–287.
  • G. E. Andrews, I. P. Goulden, and D. M. Jackson (1986) Shanks’ convergence acceleration transform, Padé approximants and partitions. J. Combin. Theory Ser. A 43 (1), pp. 70–84.
  • 16: 6.14 Integrals
    6.14.1 0 e a t E 1 ( t ) d t = 1 a ln ( 1 + a ) , a > 1 ,
    6.14.4 0 E 1 2 ( t ) d t = 2 ln 2 ,
    For collections of integrals, see Apelblat (1983, pp. 110–123), Bierens de Haan (1939, pp. 373–374, 409, 479, 571–572, 637, 664–673, 680–682, 685–697), Erdélyi et al. (1954a, vol. 1, pp. 40–42, 96–98, 177–178, 325), Geller and Ng (1969), Gradshteyn and Ryzhik (2000, §§5.2–5.3 and 6.2–6.27), Marichev (1983, pp. 182–184), Nielsen (1906b), Oberhettinger (1974, pp. 139–141), Oberhettinger (1990, pp. 53–55 and 158–160), Oberhettinger and Badii (1973, pp. 172–179), Prudnikov et al. (1986b, vol. 2, pp. 24–29 and 64–92), Prudnikov et al. (1992a, §§3.4–3.6), Prudnikov et al. (1992b, §§3.4–3.6), and Watrasiewicz (1967).
    17: Bibliography S
  • F. W. Schäfke and D. Schmidt (1966) Ein Verfahren zur Berechnung des charakteristischen Exponenten der Mathieuschen Differentialgleichung III. Numer. Math. 8 (1), pp. 68–71.
  • B. I. Schneider, X. Guan, and K. Bartschat (2016) Time propagation of partial differential equations using the short iterative Lanczos method and finite-element discrete variable representation. Adv. Quantum Chem. 72, pp. 95–127.
  • J. B. Seaborn (1991) Hypergeometric Functions and Their Applications. Texts in Applied Mathematics, Vol. 8, Springer-Verlag, New York.
  • M. J. Seaton (1982) Coulomb functions analytic in the energy. Comput. Phys. Comm. 25 (1), pp. 87–95.
  • R. Spigler, M. Vianello, and F. Locatelli (1999) Liouville-Green-Olver approximations for complex difference equations. J. Approx. Theory 96 (2), pp. 301–322.
  • 18: Bibliography M
  • R. C. McCann (1977) Inequalities for the zeros of Bessel functions. SIAM J. Math. Anal. 8 (1), pp. 166–170.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • J. N. Merner (1962) Algorithm 149: Complete elliptic integral. Comm. ACM 5 (12), pp. 605.
  • R. Metzler, J. Klafter, and J. Jortner (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Nat. Acad. Sci. U .S. A. 96 (20), pp. 11085–11089.
  • E. W. Montroll (1964) Lattice Statistics. In Applied Combinatorial Mathematics, E. F. Beckenbach (Ed.), University of California Engineering and Physical Sciences Extension Series, pp. 96–143.
  • 19: 5.13 Integrals
    5.13.4 d t Γ ( a + t ) Γ ( b + t ) Γ ( c t ) Γ ( d t ) = Γ ( a + b + c + d 3 ) Γ ( a + c 1 ) Γ ( a + d 1 ) Γ ( b + c 1 ) Γ ( b + d 1 ) , ( a + b + c + d ) > 3 .
    5.13.5 1 4 π k = 1 4 Γ ( a k + i t ) Γ ( a k i t ) Γ ( 2 i t ) Γ ( 2 i t ) d t = 1 j < k 4 Γ ( a j + a k ) Γ ( a 1 + a 2 + a 3 + a 4 ) , ( a k ) > 0 , k = 1 , 2 , 3 , 4 .
    20: 34.5 Basic Properties: 6 j Symbol
    34.5.1 { j 1 j 2 j 3 0 j 3 j 2 } = ( 1 ) J ( ( 2 j 2 + 1 ) ( 2 j 3 + 1 ) ) 1 2 ,
    34.5.2 { j 1 j 2 j 3 1 2 j 3 1 2 j 2 + 1 2 } = ( 1 ) J ( ( j 1 + j 3 j 2 ) ( j 1 + j 2 j 3 + 1 ) ( 2 j 2 + 1 ) ( 2 j 2 + 2 ) 2 j 3 ( 2 j 3 + 1 ) ) 1 2 ,
    34.5.3 { j 1 j 2 j 3 1 2 j 3 1 2 j 2 1 2 } = ( 1 ) J ( ( j 2 + j 3 j 1 ) ( j 1 + j 2 + j 3 + 1 ) 2 j 2 ( 2 j 2 + 1 ) 2 j 3 ( 2 j 3 + 1 ) ) 1 2 ,
    34.5.4 { j 1 j 2 j 3 1 j 3 1 j 2 1 } = ( 1 ) J ( J ( J + 1 ) ( J 2 j 1 ) ( J 2 j 1 1 ) ( 2 j 2 1 ) 2 j 2 ( 2 j 2 + 1 ) ( 2 j 3 1 ) 2 j 3 ( 2 j 3 + 1 ) ) 1 2 ,
    For further recursion relations see Varshalovich et al. (1988, §9.6) and Edmonds (1974, pp. 98–99). …