About the Project

.世界杯竞猜投注分析_『wn4.com_』中央1台世界杯时间表_w6n2c9o_2022年11月29日6时6分30秒_qsuoiwyqw_gov_hk

AdvancedHelp

(0.006 seconds)

31—40 of 788 matching pages

31: 3.9 Acceleration of Convergence
A transformation of a convergent sequence { s n } with limit σ into a sequence { t n } is called limit-preserving if { t n } converges to the same limit σ . … This transformation is accelerating if { s n } is a linearly convergent sequence, i. … Then the transformation of the sequence { s n } into a sequence { t n , 2 k } is given by … Then t n , 2 k = ε 2 k ( n ) . … We give a special form of Levin’s transformation in which the sequence s = { s n } of partial sums s n = j = 0 n a j is transformed into: …
32: Bibliography O
  • K. Okamoto (1986) Studies on the Painlevé equations. III. Second and fourth Painlevé equations, P II and P IV . Math. Ann. 275 (2), pp. 221–255.
  • K. Okamoto (1987a) Studies on the Painlevé equations. I. Sixth Painlevé equation P VI . Ann. Mat. Pura Appl. (4) 146, pp. 337–381.
  • K. Okamoto (1987b) Studies on the Painlevé equations. II. Fifth Painlevé equation P V . Japan. J. Math. (N.S.) 13 (1), pp. 47–76.
  • K. Okamoto (1987c) Studies on the Painlevé equations. IV. Third Painlevé equation P III . Funkcial. Ekvac. 30 (2-3), pp. 305–332.
  • S. Olver (2011) Numerical solution of Riemann-Hilbert problems: Painlevé II. Found. Comput. Math. 11 (2), pp. 153–179.
  • 33: Bibliography D
  • S. C. Dhar (1940) Note on the addition theorem of parabolic cylinder functions. J. Indian Math. Soc. (N. S.) 4, pp. 2930.
  • D. Dominici, S. J. Johnston, and K. Jordaan (2013) Real zeros of F 1 2 hypergeometric polynomials. J. Comput. Appl. Math. 247, pp. 152–161.
  • C. F. du Toit (1993) Bessel functions J n ( z ) and Y n ( z ) of integer order and complex argument. Comput. Phys. Comm. 78 (1-2), pp. 181–189.
  • T. M. Dunster (2003a) Uniform asymptotic approximations for the Whittaker functions M κ , i μ ( z ) and W κ , i μ ( z ) . Anal. Appl. (Singap.) 1 (2), pp. 199–212.
  • J. Dutka (1981) The incomplete beta function—a historical profile. Arch. Hist. Exact Sci. 24 (1), pp. 1129.
  • 34: 17.13 Integrals
    In this section, for the function Γ q see §5.18(ii).
    17.13.1 c d ( q x / c ; q ) ( q x / d ; q ) ( a x / c ; q ) ( b x / d ; q ) d q x = ( 1 q ) ( q ; q ) ( a b ; q ) c d ( c / d ; q ) ( d / c ; q ) ( a ; q ) ( b ; q ) ( c + d ) ( b c / d ; q ) ( a d / c ; q ) ,
    17.13.2 c d ( q x / c ; q ) ( q x / d ; q ) ( x q α / c ; q ) ( x q β / d ; q ) d q x = Γ q ( α ) Γ q ( β ) Γ q ( α + β ) c d c + d ( c / d ; q ) ( d / c ; q ) ( q β c / d ; q ) ( q α d / c ; q ) .
    17.13.3 0 t α 1 ( t q α + β ; q ) ( t ; q ) d t = Γ ( α ) Γ ( 1 α ) Γ q ( β ) Γ q ( 1 α ) Γ q ( α + β ) ,
    17.13.4 0 t α 1 ( c t q α + β ; q ) ( c t ; q ) d q t = Γ q ( α ) Γ q ( β ) ( c q α ; q ) ( q 1 α / c ; q ) Γ q ( α + β ) ( c ; q ) ( q / c ; q ) .
    35: 11.14 Tables
  • Abramowitz and Stegun (1964, Chapter 12) tabulates 𝐇 n ( x ) , 𝐇 n ( x ) Y n ( x ) , and I n ( x ) 𝐋 n ( x ) for n = 0 , 1 and x = 0 ( .1 ) 5 , x 1 = 0 ( .01 ) 0.2 to 6D or 7D.

  • Agrest et al. (1982) tabulates 𝐇 n ( x ) and e x 𝐋 n ( x ) for n = 0 , 1 and x = 0 ( .001 ) 5 ( .005 ) 15 ( .01 ) 100 to 11D.

  • Abramowitz and Stegun (1964, Chapter 12) tabulates 0 x ( I 0 ( t ) 𝐋 0 ( t ) ) d t and ( 2 / π ) x t 1 𝐇 0 ( t ) d t for x = 0 ( .1 ) 5 to 5D or 7D; 0 x ( 𝐇 0 ( t ) Y 0 ( t ) ) d t ( 2 / π ) ln x , 0 x ( I 0 ( t ) 𝐋 0 ( t ) ) d t ( 2 / π ) ln x , and x t 1 ( 𝐇 0 ( t ) Y 0 ( t ) ) d t for x 1 = 0 ( .01 ) 0.2 to 6D.

  • Agrest et al. (1982) tabulates 0 x 𝐇 0 ( t ) d t and e x 0 x 𝐋 0 ( t ) d t for x = 0 ( .001 ) 5 ( .005 ) 15 ( .01 ) 100 to 11D.

  • Agrest and Maksimov (1971, Chapter 11) defines incomplete Struve, Anger, and Weber functions and includes tables of an incomplete Struve function 𝐇 n ( x , α ) for n = 0 , 1 , x = 0 ( .2 ) 10 , and α = 0 ( .2 ) 1.4 , 1 2 π , together with surface plots.

  • 36: Bibliography L
  • L. J. Landau (1999) Ratios of Bessel functions and roots of α J ν ( x ) + x J ν ( x ) = 0 . J. Math. Anal. Appl. 240 (1), pp. 174–204.
  • J. LeCaine (1945) A table of integrals involving the functions E n ( x ) .
  • A. Leitner and J. Meixner (1960) Eine Verallgemeinerung der Sphäroidfunktionen. Arch. Math. 11, pp. 29–39.
  • M. Lerch (1887) Note sur la fonction 𝔎 ( w , x , s ) = k = 0 e 2 k π i x ( w + k ) s . Acta Math. 11 (1-4), pp. 19–24 (French).
  • N. A. Lukaševič (1967b) On the theory of Painlevé’s third equation. Differ. Uravn. 3 (11), pp. 1913–1923 (Russian).
  • 37: 17.7 Special Cases of Higher ϕ s r Functions
    §17.7(i) ϕ 2 2 Functions
    q -Analog of Bailey’s F 1 2 ( 1 ) Sum
    q -Analog of Gauss’s F 1 2 ( 1 ) Sum
    q -Analog of Dixon’s F 2 3 ( 1 ) Sum
    where m 1 , m 2 , , m r are arbitrary nonnegative integers. …
    38: 3.4 Differentiation
    The B k n are the differentiated Lagrangian interpolation coefficients: … where ξ 0 and ξ 1 I . For the values of n 0 and n 1 used in the formulas below … For partial derivatives we use the notation u t , s = u ( x 0 + t h , y 0 + s h ) . …
    39: 28.35 Tables
  • Blanch and Rhodes (1955) includes 𝐵𝑒 n ( t ) , 𝐵𝑜 n ( t ) , t = 1 2 q , n = 0 ( 1 ) 15 ; 8D. The range of t is 0 to 0.1, with step sizes ranging from 0.002 down to 0.00025. Notation: 𝐵𝑒 n ( t ) = a n ( q ) + 2 q ( 4 n + 2 ) q , 𝐵𝑜 n ( t ) = b n ( q ) + 2 q ( 4 n 2 ) q .

  • Ince (1932) includes eigenvalues a n , b n , and Fourier coefficients for n = 0 or 1 ( 1 ) 6 , q = 0 ( 1 ) 10 ( 2 ) 20 ( 4 ) 40 ; 7D. Also ce n ( x , q ) , se n ( x , q ) for q = 0 ( 1 ) 10 , x = 1 ( 1 ) 90 , corresponding to the eigenvalues in the tables; 5D. Notation: a n = 𝑏𝑒 n 2 q , b n = 𝑏𝑜 n 2 q .

  • Stratton et al. (1941) includes b n , b n , and the corresponding Fourier coefficients for Se n ( c , x ) and So n ( c , x ) for n = 0 or 1 ( 1 ) 4 , c = 0 ( .1 or .2 ) 4.5 . Precision is mostly 5S. Notation: c = 2 q , b n = a n + 2 q , b n = b n + 2 q , and for Se n ( c , x ) , So n ( c , x ) see §28.1.

  • Ince (1932) includes the first zero for ce n , se n for n = 2 ( 1 ) 5 or 6 , q = 0 ( 1 ) 10 ( 2 ) 40 ; 4D. This reference also gives zeros of the first derivatives, together with expansions for small q .

  • For other tables prior to 1961 see Fletcher et al. (1962, §2.2) and Lebedev and Fedorova (1960, Chapter 11).
    40: Bibliography G
  • W. Gautschi (1966) Algorithm 292: Regular Coulomb wave functions. Comm. ACM 9 (11), pp. 793–795.
  • A. Gil, J. Segura, and N. M. Temme (2002c) Computing complex Airy functions by numerical quadrature. Numer. Algorithms 30 (1), pp. 11–23.
  • D. Goss (1978) Von Staudt for 𝐅 q [ T ] . Duke Math. J. 45 (4), pp. 885–910.
  • H. W. Gould (1960) Stirling number representation problems. Proc. Amer. Math. Soc. 11 (3), pp. 447–451.
  • V. I. Gromak (1975) Theory of Painlevé’s equations. Differ. Uravn. 11 (11), pp. 373–376 (Russian).