About the Project

.世界杯竞猜投注分析_『wn4.com_』中央1台世界杯时间表_w6n2c9o_2022年11月29日6时6分30秒_qsuoiwyqw_gov_hk

AdvancedHelp

(0.003 seconds)

21—30 of 788 matching pages

21: 3.11 Approximation Techniques
Beginning with u n + 1 = 0 , u n = c n , we apply … With b 0 = 1 , the last q equations give b 1 , , b q as the solution of a system of linear equations. … (3.11.29) is a system of n + 1 linear equations for the coefficients a 0 , a 1 , , a n . … With this choice of a k and f j = f ( x j ) , the corresponding sum (3.11.32) vanishes. … Two are endpoints: ( x 0 , y 0 ) and ( x 3 , y 3 ) ; the other points ( x 1 , y 1 ) and ( x 2 , y 2 ) are control points. …
22: 8.26 Tables
  • Pearson (1965) tabulates the function I ( u , p ) ( = P ( p + 1 , u ) ) for p = 1 ( .05 ) 0 ( .1 ) 5 ( .2 ) 50 , u = 0 ( .1 ) u p to 7D, where I ( u , u p ) rounds off to 1 to 7D; also I ( u , p ) for p = 0.75 ( .01 ) 1 , u = 0 ( .1 ) 6 to 5D.

  • Pearson (1968) tabulates I x ( a , b ) for x = 0.01 ( .01 ) 1 , a , b = 0.5 ( .5 ) 11 ( 1 ) 50 , with b a , to 7D.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Stankiewicz (1968) tabulates E n ( x ) for n = 1 ( 1 ) 10 , x = 0.01 ( .01 ) 5 to 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 23: 21.1 Special Notation
    g , h positive integers.
    a j j th element of vector 𝐚 .
    diag 𝐀 Transpose of [ A 11 , A 22 , , A g g ] .
    𝐉 2 g [ 𝟎 g 𝐈 g 𝐈 g 𝟎 g ] .
    S 1 S 2 set of all elements of the form “ element of  S 1 × element of  S 2 ”.
    S 1 / S 2 set of all elements of S 1 , modulo elements of S 2 . Thus two elements of S 1 / S 2 are equivalent if they are both in S 1 and their difference is in S 2 . (For an example see §20.12(ii).)
    24: 19.29 Reduction of General Elliptic Integrals
    Let …where … Next, for j = 1 , 2 , define Q j ( t ) = f j + g j t + h j t 2 , and assume both Q ’s are positive for y < t < x . …where …If Q 1 ( t ) = ( a 1 + b 1 t ) ( a 2 + b 2 t ) , where both linear factors are positive for y < t < x , and Q 2 ( t ) = f 2 + g 2 t + h 2 t 2 , then (19.29.25) is modified so that …
    25: Bibliography K
  • M. K. Kerimov and S. L. Skorokhodov (1984c) Evaluation of complex zeros of Bessel functions J ν ( z ) and I ν ( z ) and their derivatives. Zh. Vychisl. Mat. i Mat. Fiz. 24 (10), pp. 1497–1513.
  • S. K. Kim (1972) The asymptotic expansion of a hypergeometric function F 2 2 ( 1 , α ; ρ 1 , ρ 2 ; z ) . Math. Comp. 26 (120), pp. 963.
  • Y. S. Kim, A. K. Rathie, and R. B. Paris (2013) An extension of Saalschütz’s summation theorem for the series F r + 2 r + 3 . Integral Transforms Spec. Funct. 24 (11), pp. 916–921.
  • C. G. Kokologiannaki, P. D. Siafarikas, and C. B. Kouris (1992) On the complex zeros of H μ ( z ) , J μ ( z ) , J μ ′′ ( z ) for real or complex order. J. Comput. Appl. Math. 40 (3), pp. 337–344.
  • E. D. Krupnikov and K. S. Kölbig (1997) Some special cases of the generalized hypergeometric function F q q + 1 . J. Comput. Appl. Math. 78 (1), pp. 79–95.
  • 26: 4.17 Special Values and Limits
    Table 4.17.1: Trigonometric functions: values at multiples of 1 12 π .
    θ sin θ cos θ tan θ csc θ sec θ cot θ
    11 π / 12 1 4 2 ( 3 1 ) 1 4 2 ( 3 + 1 ) ( 2 3 ) 2 ( 3 + 1 ) 2 ( 3 1 ) ( 2 + 3 )
    4.17.1 lim z 0 sin z z = 1 ,
    4.17.2 lim z 0 tan z z = 1 .
    4.17.3 lim z 0 1 cos z z 2 = 1 2 .
    27: Bibliography E
  • C. Eckart (1930) The penetration of a potential barrier by electrons. Phys. Rev. 35 (11), pp. 1303–1309.
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (1953b) Higher Transcendental Functions. Vol. II. McGraw-Hill Book Company, Inc., New York-Toronto-London.
  • L. Euler (1768) Institutiones Calculi Integralis. Opera Omnia (1), Vol. 11, pp. 110–113.
  • W. N. Everitt, L. L. Littlejohn, and R. Wellman (2004) The Sobolev orthogonality and spectral analysis of the Laguerre polynomials { L n k } for positive integers k . J. Comput. Appl. Math. 171 (1-2), pp. 199–234.
  • W. N. Everitt (2008) Note on the X 1 -Laguerre orthogonal polynomials.
  • 28: 9.18 Tables
  • Harvard University (1945) tabulates the real and imaginary parts of h 1 ( z ) , h 1 ( z ) , h 2 ( z ) , h 2 ( z ) for x 0 z x 0 , 0 z y 0 , | x 0 + i y 0 | < 6.1 , with interval 0.1 in z and z . Precision is 8D. Here h 1 ( z ) = 2 4 / 3 3 1 / 6 i Ai ( e π i / 3 z ) , h 2 ( z ) = 2 4 / 3 3 1 / 6 i Ai ( e π i / 3 z ) .

  • Miller (1946) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 . Precision is 8D. Entries for k = 1 ( 1 ) 20 are reproduced in Abramowitz and Stegun (1964, Chapter 10).

  • Sherry (1959) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; 20S.

  • Zhang and Jin (1996, p. 339) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 ; 8D.

  • National Bureau of Standards (1958) tabulates A 0 ( x ) π Hi ( x ) and A 0 ( x ) π Hi ( x ) for x = 0 ( .01 ) 1 ( .02 ) 5 ( .05 ) 11 and 1 / x = 0.01 ( .01 ) 0.1 ; 0 x A 0 ( t ) d t for x = 0.5 , 1 ( 1 ) 11 . Precision is 8D.

  • 29: 24.19 Methods of Computation
    Equations (24.5.3) and (24.5.4) enable B n and E n to be computed by recurrence. …For example, the tangent numbers T n can be generated by simple recurrence relations obtained from (24.15.3), then (24.15.4) is applied. … For other information see Chellali (1988) and Zhang and Jin (1996, pp. 1–11). For algorithms for computing B n , E n , B n ( x ) , and E n ( x ) see Spanier and Oldham (1987, pp. 37, 41, 171, and 179–180).
    §24.19(ii) Values of B n Modulo p
    30: 6.19 Tables
  • Abramowitz and Stegun (1964, Chapter 5) includes x 1 Si ( x ) , x 2 Cin ( x ) , x 1 Ein ( x ) , x 1 Ein ( x ) , x = 0 ( .01 ) 0.5 ; Si ( x ) , Ci ( x ) , Ei ( x ) , E 1 ( x ) , x = 0.5 ( .01 ) 2 ; Si ( x ) , Ci ( x ) , x e x Ei ( x ) , x e x E 1 ( x ) , x = 2 ( .1 ) 10 ; x f ( x ) , x 2 g ( x ) , x e x Ei ( x ) , x e x E 1 ( x ) , x 1 = 0 ( .005 ) 0.1 ; Si ( π x ) , Cin ( π x ) , x = 0 ( .1 ) 10 . Accuracy varies but is within the range 8S–11S.

  • Zhang and Jin (1996, pp. 652, 689) includes Si ( x ) , Ci ( x ) , x = 0 ( .5 ) 20 ( 2 ) 30 , 8D; Ei ( x ) , E 1 ( x ) , x = [ 0 , 100 ] , 8S.

  • Abramowitz and Stegun (1964, Chapter 5) includes the real and imaginary parts of z e z E 1 ( z ) , x = 19 ( 1 ) 20 , y = 0 ( 1 ) 20 , 6D; e z E 1 ( z ) , x = 4 ( .5 ) 2 , y = 0 ( .2 ) 1 , 6D; E 1 ( z ) + ln z , x = 2 ( .5 ) 2.5 , y = 0 ( .2 ) 1 , 6D.

  • Zhang and Jin (1996, pp. 690–692) includes the real and imaginary parts of E 1 ( z ) , ± x = 0.5 , 1 , 3 , 5 , 10 , 15 , 20 , 50 , 100 , y = 0 ( .5 ) 1 ( 1 ) 5 ( 5 ) 30 , 50 , 100 , 8S.