About the Project

.%E9%9F%A9%E5%9B%BD%E5%85%B0%E8%8A%9D%E5%B2%9B%E4%B8%96%E7%95%8C%E6%9D%AF%E5%85%AC%E5%9B%AD_%E3%80%8E%E7%BD%91%E5%9D%80%3A68707.vip%E3%80%8F%E7%AF%AE%E7%90%83%E4%B8%96%E7%95%8C%E6%9D%AF%E7%AB%9E%E7%8C%9C_b5p6v3_pr7bnb1nb.com

AdvancedHelp

(0.075 seconds)

11—20 of 848 matching pages

11: 25.13 Periodic Zeta Function
The notation F ( x , s ) is used for the polylogarithm Li s ( e 2 π i x ) with x real:
25.13.1 F ( x , s ) n = 1 e 2 π i n x n s ,
F ( x , s ) is periodic in x with period 1, and equals ζ ( s ) when x is an integer. …
25.13.2 F ( x , s ) = Γ ( 1 s ) ( 2 π ) 1 s ( e π i ( 1 s ) / 2 ζ ( 1 s , x ) + e π i ( s 1 ) / 2 ζ ( 1 s , 1 x ) ) , 0 < x < 1 , s > 1 ,
25.13.3 ζ ( 1 s , x ) = Γ ( s ) ( 2 π ) s ( e π i s / 2 F ( x , s ) + e π i s / 2 F ( x , s ) ) , s > 0 if 0 < x < 1 ; s > 1 if x = 1 .
12: 34.9 Graphical Method
§34.9 Graphical Method
For specific examples of the graphical method of representing sums involving the 3 j , 6 j , and 9 j symbols, see Varshalovich et al. (1988, Chapters 11, 12) and Lehman and O’Connell (1973, §3.3).
13: 34.10 Zeros
§34.10 Zeros
In a 3 j symbol, if the three angular momenta j 1 , j 2 , j 3 do not satisfy the triangle conditions (34.2.1), or if the projective quantum numbers do not satisfy (34.2.3), then the 3 j symbol is zero. Similarly the 6 j symbol (34.4.1) vanishes when the triangle conditions are not satisfied by any of the four 3 j symbols in the summation. …Such zeros are called nontrivial zeros. For further information, including examples of nontrivial zeros and extensions to 9 j symbols, see Srinivasa Rao and Rajeswari (1993, pp. 133–215, 294–295, 299–310).
14: 34.13 Methods of Computation
§34.13 Methods of Computation
Methods of computation for 3 j and 6 j symbols include recursion relations, see Schulten and Gordon (1975a), Luscombe and Luban (1998), and Edmonds (1974, pp. 42–45, 48–51, 97–99); summation of single-sum expressions for these symbols, see Varshalovich et al. (1988, §§8.2.6, 9.2.1) and Fang and Shriner (1992); evaluation of the generalized hypergeometric functions of unit argument that represent these symbols, see Srinivasa Rao and Venkatesh (1978) and Srinivasa Rao (1981). For 9 j symbols, methods include evaluation of the single-sum series (34.6.2), see Fang and Shriner (1992); evaluation of triple-sum series, see Varshalovich et al. (1988, §10.2.1) and Srinivasa Rao et al. (1989). …
15: 34.7 Basic Properties: 9 j Symbol
§34.7 Basic Properties: 9 j Symbol
§34.7(ii) Symmetry
§34.7(iv) Orthogonality
§34.7(vi) Sums
It constitutes an addition theorem for the 9 j symbol. …
16: 16.4 Argument Unity
The function F q q + 1 ( 𝐚 ; 𝐛 ; z ) is well-poised if … See Raynal (1979) for a statement in terms of 3 j symbols (Chapter 34). … Transformations for both balanced F 3 4 ( 1 ) and very well-poised F 6 7 ( 1 ) are included in Bailey (1964, pp. 56–63). A similar theory is available for very well-poised F 8 9 ( 1 ) ’s which are 2-balanced. …
17: 15.4 Special Cases
F ( a , b ; a ; z ) = ( 1 z ) b ,
15.4.31 F ( a , 1 2 + a ; 3 2 2 a ; 1 3 ) = ( 8 9 ) 2 a Γ ( 4 3 ) Γ ( 3 2 2 a ) Γ ( 3 2 ) Γ ( 4 3 2 a ) .
15.4.32 F ( a , 1 2 + a ; 5 6 + 2 3 a ; 1 9 ) = π ( 3 4 ) a Γ ( 5 6 + 2 3 a ) Γ ( 1 2 + 1 3 a ) Γ ( 5 6 + 1 3 a ) .
where the limit interpretation (15.2.6), rather than (15.2.5), has to be taken when in (15.4.33) a = 1 3 , 4 3 , 7 3 , , and in (15.4.34) a = 0 , 1 , 2 , . …
18: 34.1 Special Notation
2 j 1 , 2 j 2 , 2 j 3 , 2 l 1 , 2 l 2 , 2 l 3 nonnegative integers.
The main functions treated in this chapter are the Wigner 3 j , 6 j , 9 j symbols, respectively, … An often used alternative to the 3 j symbol is the Clebsch–Gordan coefficient …For other notations for 3 j , 6 j , 9 j symbols, see Edmonds (1974, pp. 52, 97, 104–105) and Varshalovich et al. (1988, §§8.11, 9.10, 10.10).
19: 15.8 Transformations of Variable
Alternatively, if b a is a negative integer, then we interchange a and b in 𝐅 ( a , b ; c ; z ) . … The hypergeometric functions that correspond to Groups 3 and 4 have a nonlinear function of z as variable. The transformation formulas between two hypergeometric functions in Group 2, or two hypergeometric functions in Group 3, are the linear transformations (15.8.1). …
Group 1 Group 3
Group 2 Group 3
20: 9.4 Maclaurin Series
9.4.1 Ai ( z ) = Ai ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Ai ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
9.4.2 Ai ( z ) = Ai ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Ai ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) ,
9.4.3 Bi ( z ) = Bi ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Bi ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
9.4.4 Bi ( z ) = Bi ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Bi ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) .