About the Project

重庆时时彩后2【信誉下注平台qee9.com】46E3

AdvancedHelp

(0.004 seconds)

11—20 of 802 matching pages

11: 10.18 Modulus and Phase Functions
N ν 2 ( x ) ϕ ν ( x ) = 2 ( x 2 ν 2 ) π x 3 ,
As x , with ν fixed and μ = 4 ν 2 , …
10.18.20 ( 2 k 3 ) !! ( 2 k ) !! ( μ 1 ) ( μ 9 ) ( μ ( 2 k 3 ) 2 ) ( μ ( 2 k + 1 ) ( 2 k 1 ) 2 ) ( 2 x ) 2 k , k 2 ,
10.18.21 ϕ ν ( x ) x ( 1 2 ν 1 4 ) π + μ + 3 2 ( 4 x ) + μ 2 + 46 μ 63 6 ( 4 x ) 3 + μ 3 + 185 μ 2 2053 μ + 1899 5 ( 4 x ) 5 + .
In (10.18.17) and (10.18.18) the remainder after n terms does not exceed the ( n + 1 ) th term in absolute value and is of the same sign, provided that n > ν 1 2 for (10.18.17) and 3 2 ν 3 2 for (10.18.18).
12: 13.10 Integrals
13.10.6 0 e z t t 2 t 2 b 2 𝐌 ( a , b , t 2 ) d t = 1 2 π 1 2 Γ ( b 1 2 ) U ( b 1 2 , a + 1 2 , 1 4 z 2 ) , b > 1 2 , z > 0 ,
13.10.9 1 2 π i ( 0 + ) e t z t a U ( a , b , y / t ) d t = 2 z 1 2 ( 2 a b 1 ) y 1 2 ( 1 b ) Γ ( a ) Γ ( a b + 1 ) K b 1 ( 2 z y ) , z > 0 .
13.10.12 0 cos ( 2 x t ) 𝐌 ( a , b , t 2 ) d t = π 2 Γ ( a ) x 2 a 1 e x 2 U ( b 1 2 , a + 1 2 , x 2 ) , a > 0 .
13.10.15 0 t 1 2 ν U ( a , b , t ) J ν ( 2 x t ) d t = Γ ( ν b + 2 ) Γ ( a ) x 1 2 ν U ( ν b + 2 , ν a + 2 , x ) , x > 0 , max ( b 2 , 1 ) < ν < 2 a + 1 2 ,
For additional Hankel transforms and also other Bessel transforms see Erdélyi et al. (1954b, §8.18) and Oberhettinger (1972, §§1.16 and 3.4.42–46, 4.4.45–47, 5.94–97). …
13: 4.17 Special Values and Limits
Table 4.17.1: Trigonometric functions: values at multiples of 1 12 π .
θ sin θ cos θ tan θ csc θ sec θ cot θ
π / 12 1 4 2 ( 3 1 ) 1 4 2 ( 3 + 1 ) 2 3 2 ( 3 + 1 ) 2 ( 3 1 ) 2 + 3
π / 4 1 2 2 1 2 2 1 2 2 1
2 π / 3 1 2 3 1 2 3 2 3 3 2 1 3 3
3 π / 4 1 2 2 1 2 2 1 2 2 1
4.17.3 lim z 0 1 cos z z 2 = 1 2 .
14: 34.5 Basic Properties: 6 j Symbol
If any lower argument in a 6 j symbol is 0 , 1 2 , or 1 , then the 6 j symbol has a simple algebraic form. …
34.5.5 { j 1 j 2 j 3 1 j 3 1 j 2 } = ( 1 ) J ( 2 ( J + 1 ) ( J 2 j 1 ) ( J 2 j 2 ) ( J 2 j 3 + 1 ) 2 j 2 ( 2 j 2 + 1 ) ( 2 j 2 + 2 ) ( 2 j 3 1 ) 2 j 3 ( 2 j 3 + 1 ) ) 1 2 ,
34.5.6 { j 1 j 2 j 3 1 j 3 1 j 2 + 1 } = ( 1 ) J ( ( J 2 j 2 1 ) ( J 2 j 2 ) ( J 2 j 3 + 1 ) ( J 2 j 3 + 2 ) ( 2 j 2 + 1 ) ( 2 j 2 + 2 ) ( 2 j 2 + 3 ) ( 2 j 3 1 ) 2 j 3 ( 2 j 3 + 1 ) ) 1 2 ,
34.5.7 { j 1 j 2 j 3 1 j 3 j 2 } = ( 1 ) J + 1 2 ( j 2 ( j 2 + 1 ) + j 3 ( j 3 + 1 ) j 1 ( j 1 + 1 ) ) ( 2 j 2 ( 2 j 2 + 1 ) ( 2 j 2 + 2 ) 2 j 3 ( 2 j 3 + 1 ) ( 2 j 3 + 2 ) ) 1 2 .
34.5.13 E ( j ) = ( ( j 2 ( j 2 j 3 ) 2 ) ( ( j 2 + j 3 + 1 ) 2 j 2 ) ( j 2 ( l 2 l 3 ) 2 ) ( ( l 2 + l 3 + 1 ) 2 j 2 ) ) 1 2 .
15: 19.28 Integrals of Elliptic Integrals
19.28.1 0 1 t σ 1 R F ( 0 , t , 1 ) d t = 1 2 ( B ( σ , 1 2 ) ) 2 ,
19.28.2 0 1 t σ 1 R G ( 0 , t , 1 ) d t = σ 4 σ + 2 ( B ( σ , 1 2 ) ) 2 ,
19.28.3 0 1 t σ 1 ( 1 t ) R D ( 0 , t , 1 ) d t = 3 4 σ + 2 ( B ( σ , 1 2 ) ) 2 .
19.28.9 0 π / 2 R F ( sin 2 θ cos 2 ( x + y ) , sin 2 θ cos 2 ( x y ) , 1 ) d θ = R F ( 0 , cos 2 x , 1 ) R F ( 0 , cos 2 y , 1 ) ,
19.28.10 0 R F ( ( a c + b d ) 2 , ( a d + b c ) 2 , 4 a b c d cosh 2 z ) d z = 1 2 R F ( 0 , a 2 , b 2 ) R F ( 0 , c 2 , d 2 ) , a , b , c , d > 0 .
16: 29.1 Special Notation
The main functions treated in this chapter are the eigenvalues a ν 2 m ( k 2 ) , a ν 2 m + 1 ( k 2 ) , b ν 2 m + 1 ( k 2 ) , b ν 2 m + 2 ( k 2 ) , the Lamé functions 𝐸𝑐 ν 2 m ( z , k 2 ) , 𝐸𝑐 ν 2 m + 1 ( z , k 2 ) , 𝐸𝑠 ν 2 m + 1 ( z , k 2 ) , 𝐸𝑠 ν 2 m + 2 ( z , k 2 ) , and the Lamé polynomials 𝑢𝐸 2 n m ( z , k 2 ) , 𝑠𝐸 2 n + 1 m ( z , k 2 ) , 𝑐𝐸 2 n + 1 m ( z , k 2 ) , 𝑑𝐸 2 n + 1 m ( z , k 2 ) , 𝑠𝑐𝐸 2 n + 2 m ( z , k 2 ) , 𝑠𝑑𝐸 2 n + 2 m ( z , k 2 ) , 𝑐𝑑𝐸 2 n + 2 m ( z , k 2 ) , 𝑠𝑐𝑑𝐸 2 n + 3 m ( z , k 2 ) . … Other notations that have been used are as follows: Ince (1940a) interchanges a ν 2 m + 1 ( k 2 ) with b ν 2 m + 1 ( k 2 ) . The relation to the Lamé functions L c ν ( m ) , L s ν ( m ) of Jansen (1977) is given by …
𝐸𝑠 ν 2 m + 2 ( z , k 2 ) = s ν 2 m + 2 ( k 2 ) Es ν 2 m + 2 ( z , k 2 ) ,
where the positive factors c ν m ( k 2 ) and s ν m ( k 2 ) are determined by …
17: 4.30 Elementary Properties
Table 4.30.1: Hyperbolic functions: interrelations. …
sinh θ = a cosh θ = a tanh θ = a csch θ = a sech θ = a coth θ = a
sinh θ a ( a 2 1 ) 1 / 2 a ( 1 a 2 ) 1 / 2 a 1 a 1 ( 1 a 2 ) 1 / 2 ( a 2 1 ) 1 / 2
cosh θ ( 1 + a 2 ) 1 / 2 a ( 1 a 2 ) 1 / 2 a 1 ( 1 + a 2 ) 1 / 2 a 1 a ( a 2 1 ) 1 / 2
tanh θ a ( 1 + a 2 ) 1 / 2 a 1 ( a 2 1 ) 1 / 2 a ( 1 + a 2 ) 1 / 2 ( 1 a 2 ) 1 / 2 a 1
csch θ a 1 ( a 2 1 ) 1 / 2 a 1 ( 1 a 2 ) 1 / 2 a a ( 1 a 2 ) 1 / 2 ( a 2 1 ) 1 / 2
sech θ ( 1 + a 2 ) 1 / 2 a 1 ( 1 a 2 ) 1 / 2 a ( 1 + a 2 ) 1 / 2 a a 1 ( a 2 1 ) 1 / 2
18: 29.15 Fourier Series and Chebyshev Series
Polynomial 𝑢𝐸 2 n m ( z , k 2 )
Polynomial 𝑠𝐸 2 n + 1 m ( z , k 2 )
Polynomial 𝑠𝑐𝐸 2 n + 2 m ( z , k 2 )
Polynomial 𝑠𝑑𝐸 2 n + 2 m ( z , k 2 )
Polynomial 𝑐𝑑𝐸 2 n + 2 m ( z , k 2 )
19: 22.9 Cyclic Identities
§22.9(ii) Typical Identities of Rank 2
These identities are cyclic in the sense that each of the indices m , n in the first product of, for example, the form s m , p ( 4 ) s n , p ( 4 ) are simultaneously permuted in the cyclic order: m m + 1 m + 2 p 1 2 m 1 ; n n + 1 n + 2 p 1 2 n 1 . …
22.9.11 ( d 1 , 2 ( 2 ) ) 2 d 2 , 2 ( 2 ) ± ( d 2 , 2 ( 2 ) ) 2 d 1 , 2 ( 2 ) = k ( d 1 , 2 ( 2 ) ± d 2 , 2 ( 2 ) ) ,
22.9.12 c 1 , 2 ( 2 ) s 1 , 2 ( 2 ) d 2 , 2 ( 2 ) + c 2 , 2 ( 2 ) s 2 , 2 ( 2 ) d 1 , 2 ( 2 ) = 0 .
22.9.21 k 2 c 1 , 2 ( 2 ) s 1 , 2 ( 2 ) c 2 , 2 ( 2 ) s 2 , 2 ( 2 ) = k ( 1 ( s 1 , 2 ( 2 ) ) 2 ( s 2 , 2 ( 2 ) ) 2 ) .
20: 27.2 Functions
where p 1 , p 2 , , p ν ( n ) are the distinct prime factors of n , each exponent a r is positive, and ν ( n ) is the number of distinct primes dividing n . … The ϕ ( n ) numbers a , a 2 , , a ϕ ( n ) are relatively prime to n and distinct (mod n ). …It is the special case k = 2 of the function d k ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …
27.2.12 μ ( n ) = { 1 , n = 1 , ( 1 ) ν ( n ) , a 1 = a 2 = = a ν ( n ) = 1 , 0 , otherwise .
Table 27.2.2: Functions related to division.
n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
7 6 2 8 20 8 6 42 33 20 4 48 46 22 4 72