About the Project

衡山外围白虎【世界杯下注qee9.com】3rd

AdvancedHelp

The term"注qee9.com" was not found.Possible alternative term: "welcom".

(0.003 seconds)

1—10 of 569 matching pages

1: 34.2 Definition: 3 j Symbol
§34.2 Definition: 3 j Symbol
The quantities j 1 , j 2 , j 3 in the 3 j symbol are called angular momenta. …They therefore satisfy the triangle conditions …where r , s , t is any permutation of 1 , 2 , 3 . The corresponding projective quantum numbers m 1 , m 2 , m 3 are given by …
2: 19.21 Connection Formulas
The complete case of R J can be expressed in terms of R F and R D : … R D ( x , y , z ) is symmetric only in x and y , but either (nonzero) x or (nonzero) y can be moved to the third position by using …
19.21.8 R D ( y , z , x ) + R D ( z , x , y ) + R D ( x , y , z ) = 3 x 1 / 2 y 1 / 2 z 1 / 2 ,
19.21.9 x R D ( y , z , x ) + y R D ( z , x , y ) + z R D ( x , y , z ) = 3 R F ( x , y , z ) .
Because R G is completely symmetric, x , y , z can be permuted on the right-hand side of (19.21.10) so that ( x z ) ( y z ) 0 if the variables are real, thereby avoiding cancellations when R G is calculated from R F and R D (see §19.36(i)). …
3: 19.27 Asymptotic Approximations and Expansions
§19.27(iv) R D ( x , y , z )
19.27.7 R D ( x , y , z ) = 3 2 z 3 / 2 ( ln ( 8 z a + g ) 2 ) ( 1 + O ( a z ) ) , a / z 0 .
19.27.8 R D ( x , y , z ) = 3 x y z 6 x y R G ( x , y , 0 ) ( 1 + O ( z g ) ) , z / g 0 .
19.27.9 R D ( x , y , z ) = 3 x z ( y + z ) ( 1 + O ( b x ln x b ) ) , b / x 0 .
19.27.10 R D ( x , y , z ) = R D ( 0 , y , z ) 3 x h z ( 1 + O ( x h ) ) , x / h 0 .
4: 19.20 Special Cases
§19.20(iv) R D ( x , y , z )
R D ( x , x , x ) = x 3 / 2 ,
R D ( λ x , λ y , λ z ) = λ 3 / 2 R D ( x , y , z ) ,
R D ( 0 , y , y ) = 3 4 π y 3 / 2 ,
19.20.22 0 1 t 2 d t 1 t 4 = 1 3 R D ( 0 , 2 , 1 ) = ( Γ ( 3 4 ) ) 2 ( 2 π ) 1 / 2 = 0.59907 01173 67796 10371 .
5: 19.34 Mutual Inductance of Coaxial Circles
a 3 = h 2 + a 2 + b 2 ,
19.34.3 2 a b I ( 𝐞 5 ) = a 3 I ( 𝟎 ) I ( 𝐞 3 ) = a 3 I ( 𝟎 ) r + 2 r 2 I ( 𝐞 3 ) = 2 a b ( I ( 𝟎 ) r 2 I ( 𝐞 1 𝐞 3 ) ) ,
19.34.4 r ± 2 = a 3 ± 2 a b = h 2 + ( a ± b ) 2
Application of (19.29.4) and (19.29.7) with α = 1 , a β + b β t = 1 t , δ = 3 , and a γ + b γ t = 1 yields
19.34.5 3 c 2 8 π a b M = 3 R F ( 0 , r + 2 , r 2 ) 2 r 2 R D ( 0 , r + 2 , r 2 ) ,
6: 19.25 Relations to Other Functions
Equations (19.25.9)–(19.25.11) correspond to three (nonzero) choices for the last variable of R D ; see (19.21.7). … In (19.25.38) and (19.25.39) j , k , is any permutation of the numbers 1 , 2 , 3 . … in which 2 ω 1 and 2 ω 3 are generators for the lattice 𝕃 , ω 2 = ω 1 ω 3 , and η j = ζ ( ω j ) (see (23.2.12)). … ( F 1 and F D are equivalent to the R -function of 3 and n variables, respectively, but lack full symmetry.) …
7: 19.28 Integrals of Elliptic Integrals
19.28.3 0 1 t σ 1 ( 1 t ) R D ( 0 , t , 1 ) d t = 3 4 σ + 2 ( B ( σ , 1 2 ) ) 2 .
19.28.5 z R D ( x , y , t ) d t = 6 R F ( x , y , z ) ,
19.28.6 0 1 R D ( x , y , v 2 z + ( 1 v 2 ) p ) d v = R J ( x , y , z , p ) .
19.28.7 0 R J ( x , y , z , r 2 ) d r = 3 2 π R F ( x y , x z , y z ) ,
8: 19.17 Graphics
See accompanying text
Figure 19.17.3: R D ( x , y , 1 ) for 0 x 2 , y = 0 ,  0.1 ,  1 ,  5 ,  25 . y = 1 corresponds to 3 2 ( R C ( x , 1 ) x ) / ( 1 x ) , x 1 . Magnify
See accompanying text
Figure 19.17.8: R J ( 0 , y , 1 , p ) , 0 y 1 , 1 p 2 . …The function is asymptotic to 3 2 π / y p as p 0 + , and to ( 3 2 / p ) ln ( 16 / y ) as y 0 + . …When p = 1 , it reduces to R D ( 0 , y , 1 ) . If y = 1 , then it has the value 3 2 π / ( p + p ) when p > 0 , and 3 2 π / ( p 1 ) when p < 0 . … Magnify 3D Help
9: 19.16 Definitions
19.16.5 R D ( x , y , z ) = R J ( x , y , z , z ) = 3 2 0 d t s ( t ) ( t + z ) ,
and R D is a degenerate case of R J , so is R J a degenerate case of the hyperelliptic integral, …
b 3 = a + a b 1 b 2 b 4 .
10: 19.22 Quadratic Transformations
19.22.3 2 y 2 R D ( 0 , x 2 , y 2 ) = 1 4 ( y 2 x 2 ) R D ( 0 , x y , a 2 ) + 3 R F ( 0 , x y , a 2 ) .
19.22.4 ( p ± 2 p 2 ) R J ( 0 , x 2 , y 2 , p 2 ) = 2 ( p ± 2 a 2 ) R J ( 0 , x y , a 2 , p ± 2 ) 3 R F ( 0 , x y , a 2 ) + 3 π / ( 2 p ) ,
19.22.10 R D ( 0 , g 0 2 , a 0 2 ) = 3 π 4 M ( a 0 , g 0 ) a 0 2 n = 0 Q n ,
19.22.19 ( z ± 2 z 2 ) R D ( x 2 , y 2 , z 2 ) = 2 ( z ± 2 a 2 ) R D ( a 2 , z 2 , z ± 2 ) 3 R F ( x 2 , y 2 , z 2 ) + ( 3 / z ) ,
19.22.20 ( p ± 2 p 2 ) R J ( x 2 , y 2 , z 2 , p 2 ) = 2 ( p ± 2 a 2 ) R J ( a 2 , z + 2 , z 2 , p ± 2 ) 3 R F ( x 2 , y 2 , z 2 ) + 3 R C ( z 2 , p 2 ) ,