About the Project

代办韩国崇实大学文凭毕业证《做证微fuk7778》3s8Yg

AdvancedHelp

(0.004 seconds)

21—30 of 568 matching pages

21: 23.3 Differential Equations
and are denoted by e 1 , e 2 , e 3 . … Let g 2 3 27 g 3 2 , or equivalently Δ be nonzero, or e 1 , e 2 , e 3 be distinct. …Similarly for ζ ( z ; g 2 , g 3 ) and σ ( z ; g 2 , g 3 ) . As functions of g 2 and g 3 , ( z ; g 2 , g 3 ) and ζ ( z ; g 2 , g 3 ) are meromorphic and σ ( z ; g 2 , g 3 ) is entire. Conversely, g 2 , g 3 , and the set { e 1 , e 2 , e 3 } are determined uniquely by the lattice 𝕃 independently of the choice of generators. …
22: 23.7 Quarter Periods
23.7.1 ( 1 2 ω 1 ) = e 1 + ( e 1 e 3 ) ( e 1 e 2 ) = e 1 + ω 1 2 ( K ( k ) ) 2 k ,
23.7.2 ( 1 2 ω 2 ) = e 2 i ( e 1 e 2 ) ( e 2 e 3 ) = e 2 i ω 1 2 ( K ( k ) ) 2 k k ,
23.7.3 ( 1 2 ω 3 ) = e 3 ( e 1 e 3 ) ( e 2 e 3 ) = e 3 ω 1 2 ( K ( k ) ) 2 k ,
23: 24.3 Graphs
See accompanying text
Figure 24.3.1: Bernoulli polynomials B n ( x ) , n = 2 , 3 , , 6 . Magnify
See accompanying text
Figure 24.3.2: Euler polynomials E n ( x ) , n = 2 , 3 , , 6 . Magnify
24: 16.24 Physical Applications
§16.24(iii) 3 j , 6 j , and 9 j Symbols
The 3 j symbols, or Clebsch–Gordan coefficients, play an important role in the decomposition of reducible representations of the rotation group into irreducible representations. They can be expressed as F 2 3 functions with unit argument. …These are balanced F 3 4 functions with unit argument. …
25: 27.15 Chinese Remainder Theorem
Choose four relatively prime moduli m 1 , m 2 , m 3 , and m 4 of five digits each, for example 2 16 3 , 2 16 1 , 2 16 + 1 , and 2 16 + 3 . …By the Chinese remainder theorem each integer in the data can be uniquely represented by its residues (mod m 1 ), (mod m 2 ), (mod m 3 ), and (mod m 4 ), respectively. Because each residue has no more than five digits, the arithmetic can be performed efficiently on these residues with respect to each of the moduli, yielding answers a 1 ( mod m 1 ) , a 2 ( mod m 2 ) , a 3 ( mod m 3 ) , and a 4 ( mod m 4 ) , where each a j has no more than five digits. …
26: 36.9 Integral Identities
36.9.1 | Ψ 1 ( x ) | 2 = 2 5 / 3 0 Ψ 1 ( 2 2 / 3 ( 3 u 2 + x ) ) d u ;
36.9.2 ( Ai ( x ) ) 2 = 2 2 / 3 π 0 Ai ( 2 2 / 3 ( u 2 + x ) ) d u .
36.9.4 | Ψ 2 ( x , y ) | 2 = 0 ( Ψ 1 ( 4 u 3 + 2 u y + x u 1 / 3 ) + Ψ 1 ( 4 u 3 + 2 u y x u 1 / 3 ) ) d u u 1 / 3 .
36.9.8 | Ψ ( H ) ( x , y , z ) | 2 = 8 π 2 ( 2 9 ) 1 / 3 Ai ( ( 4 3 ) 1 / 3 ( x + z v + 3 u 2 ) ) Ai ( ( 4 3 ) 1 / 3 ( y + z u + 3 v 2 ) ) d u d v .
36.9.9 | Ψ ( E ) ( x , y , z ) | 2 = 8 π 2 3 2 / 3 0 0 2 π ( Ai ( 1 3 1 / 3 ( x + i y + 2 z u exp ( i θ ) + 3 u 2 exp ( 2 i θ ) ) ) Bi ( 1 3 1 / 3 ( x i y + 2 z u exp ( i θ ) + 3 u 2 exp ( 2 i θ ) ) ) ) u d u d θ .
27: 36.6 Scaling Relations
umbilics:  𝐲 ( U ) ( k ) = ( x k 2 / 3 , y k 2 / 3 , z k 1 / 3 ) .
umbilics:  β ( U ) = 1 3 .
umbilics:  γ x ( U ) = 2 3 ,
γ y ( U ) = 2 3 ,
γ z ( U ) = 1 3 .
28: 19.32 Conformal Map onto a Rectangle
with x 1 , x 2 , x 3 real constants, has differential …
19.32.3 x 1 > x 2 > x 3 ,
z ( x 2 ) = z ( x 1 ) + z ( x 3 ) ,
z ( x 3 ) = R F ( x 3 x 1 , x 3 x 2 , 0 ) = i R F ( 0 , x 1 x 3 , x 2 x 3 ) .
As p proceeds along the entire real axis with the upper half-plane on the right, z describes the rectangle in the clockwise direction; hence z ( x 3 ) is negative imaginary. …
29: 9.5 Integral Representations
9.5.2 Ai ( x ) = x 1 / 2 π 1 cos ( x 3 / 2 ( 1 3 t 3 + t 2 2 3 ) ) d t , x > 0 .
9.5.4 Ai ( z ) = 1 2 π i e π i / 3 e π i / 3 exp ( 1 3 t 3 z t ) d t ,
9.5.5 Bi ( z ) = 1 2 π e π i / 3 exp ( 1 3 t 3 z t ) d t + 1 2 π e π i / 3 exp ( 1 3 t 3 z t ) d t .
9.5.6 Ai ( z ) = 3 2 π 0 exp ( t 3 3 z 3 3 t 3 ) d t , | ph z | < 1 6 π .
In (9.5.7) and (9.5.8) ζ = 2 3 z 3 / 2 . …
30: 9.1 Special Notation
Other notations that have been used are as follows: Ai ( x ) and Bi ( x ) for Ai ( x ) and Bi ( x ) (Jeffreys (1928), later changed to Ai ( x ) and Bi ( x ) ); U ( x ) = π Bi ( x ) , V ( x ) = π Ai ( x ) (Fock (1945)); A ( x ) = 3 1 / 3 π Ai ( 3 1 / 3 x ) (Szegő (1967, §1.81)); e 0 ( x ) = π Hi ( x ) , e ~ 0 ( x ) = π Gi ( x ) (Tumarkin (1959)).