About the Project

买张日本埼玉医科大学文凭毕业证【somewhat微aptao168】3dHg1foA

AdvancedHelp

(0.004 seconds)

11—20 of 568 matching pages

11: 34.8 Approximations for Large Parameters
§34.8 Approximations for Large Parameters
For large values of the parameters in the 3 j , 6 j , and 9 j symbols, different asymptotic forms are obtained depending on which parameters are large. …
34.8.1 { j 1 j 2 j 3 j 2 j 1 l 3 } = ( 1 ) j 1 + j 2 + j 3 + l 3 ( 4 π ( 2 j 1 + 1 ) ( 2 j 2 + 1 ) ( 2 l 3 + 1 ) sin θ ) 1 2 ( cos ( ( l 3 + 1 2 ) θ 1 4 π ) + o ( 1 ) ) , j 1 , j 2 , j 3 l 3 1 ,
Uniform approximations in terms of Airy functions for the 3 j and 6 j symbols are given in Schulten and Gordon (1975b). For approximations for the 3 j , 6 j , and 9 j symbols with error bounds see Flude (1998), Chen et al. (1999), and Watson (1999): these references also cite earlier work.
12: 22.9 Cyclic Identities
22.9.10 d 1 , 3 ( 2 ) d 2 , 3 ( 2 ) + d 2 , 3 ( 2 ) d 3 , 3 ( 2 ) + d 3 , 3 ( 2 ) d 1 , 3 ( 2 ) = d 1 , 3 ( 4 ) d 2 , 3 ( 4 ) + d 2 , 3 ( 4 ) d 3 , 3 ( 4 ) + d 3 , 3 ( 4 ) d 1 , 3 ( 4 ) = κ ( κ + 2 ) .
§22.9(iii) Typical Identities of Rank 3
22.9.13 s 1 , 3 ( 4 ) s 2 , 3 ( 4 ) s 3 , 3 ( 4 ) = 1 1 κ 2 ( s 1 , 3 ( 4 ) + s 2 , 3 ( 4 ) + s 3 , 3 ( 4 ) ) ,
22.9.22 s 1 , 3 ( 2 ) c 1 , 3 ( 2 ) d 2 , 3 ( 2 ) d 3 , 3 ( 2 ) + s 2 , 3 ( 2 ) c 2 , 3 ( 2 ) d 3 , 3 ( 2 ) d 1 , 3 ( 2 ) + s 3 , 3 ( 2 ) c 3 , 3 ( 2 ) d 1 , 3 ( 2 ) d 2 , 3 ( 2 ) = κ 2 + k 2 1 1 κ 2 ( s 1 , 3 ( 2 ) c 1 , 3 ( 2 ) + s 2 , 3 ( 2 ) c 2 , 3 ( 2 ) + s 3 , 3 ( 2 ) c 3 , 3 ( 2 ) ) ,
22.9.23 s 1 , 3 ( 4 ) d 1 , 3 ( 4 ) c 2 , 3 ( 4 ) c 3 , 3 ( 4 ) + s 2 , 3 ( 4 ) d 2 , 3 ( 4 ) c 3 , 3 ( 4 ) c 1 , 3 ( 4 ) + s 3 , 3 ( 4 ) d 3 , 3 ( 4 ) c 1 , 3 ( 4 ) c 2 , 3 ( 4 ) = κ 2 1 κ 2 ( s 1 , 3 ( 4 ) d 1 , 3 ( 4 ) + s 2 , 3 ( 4 ) d 2 , 3 ( 4 ) + s 2 , 3 ( 4 ) d 2 , 3 ( 4 ) ) .
13: 3 Numerical Methods
Chapter 3 Numerical Methods
14: 4.43 Cubic Equations
A = ( 4 3 p ) 1 / 2 ,
B = ( 4 3 p ) 1 / 2 .
  • (a)

    A sin a , A sin ( a + 2 3 π ) , and A sin ( a + 4 3 π ) , with sin ( 3 a ) = 4 q / A 3 , when 4 p 3 + 27 q 2 0 .

  • (b)

    A cosh a , A cosh ( a + 2 3 π i ) , and A cosh ( a + 4 3 π i ) , with cosh ( 3 a ) = 4 q / A 3 , when p < 0 , q < 0 , and 4 p 3 + 27 q 2 > 0 .

  • (c)

    B sinh a , B sinh ( a + 2 3 π i ) , and B sinh ( a + 4 3 π i ) , with sinh ( 3 a ) = 4 q / B 3 , when p > 0 .

  • 15: 34.14 Tables
    §34.14 Tables
    Tables of exact values of the squares of the 3 j and 6 j symbols in which all parameters are 8 are given in Rotenberg et al. (1959), together with a bibliography of earlier tables of 3 j , 6 j , and 9 j symbols on pp. … Tables of 3 j and 6 j symbols in which all parameters are 17 / 2 are given in Appel (1968) to 6D. …Other tabulations for 3 j symbols are listed on pp. … In Varshalovich et al. (1988) algebraic expressions for the Clebsch–Gordan coefficients with all parameters 5 and numerical values for all parameters 3 are given on pp. …
    16: 7.3 Graphics
    See accompanying text
    Figure 7.3.1: Complementary error functions erfc x and erfc ( 10 x ) , 3 x 3 . Magnify
    See accompanying text
    Figure 7.3.5: | erf ( x + i y ) | , 3 x 3 , 3 y 3 . … Magnify 3D Help
    See accompanying text
    Figure 7.3.6: | erfc ( x + i y ) | , 3 x 3 , 3 y 3 . … Magnify 3D Help
    17: 23.5 Special Lattices
    Then Δ > 0 and the parallelogram with vertices at 0 , 2 ω 1 , 2 ω 1 + 2 ω 3 , 2 ω 3 is a rectangle. … Also, e 2 and g 3 have opposite signs unless ω 3 = i ω 1 , in which event both are zero. As functions of ω 3 , e 1 and e 2 are decreasing and e 3 is increasing. … The parallelogram 0 , 2 ω 1 , 2 ω 1 + 2 ω 3 , 2 ω 3 is a square, and … The parallelogram 0 , 2 ω 1 2 ω 3 , 2 ω 1 , 2 ω 3 , is a rhombus: see Figure 23.5.1. …
    18: 34 3j, 6j, 9j Symbols
    Chapter 34 3 j , 6 j , 9 j Symbols
    19: 9.10 Integrals
    0 Ai ( t ) d t = 1 3 ,
    9.10.14 0 e p t Ai ( t ) d t = e p 3 / 3 ( 1 3 p F 1 1 ( 1 3 ; 4 3 ; 1 3 p 3 ) 3 4 / 3 Γ ( 4 3 ) + p 2 F 1 1 ( 2 3 ; 5 3 ; 1 3 p 3 ) 3 5 / 3 Γ ( 5 3 ) ) , p .
    9.10.15 0 e p t Ai ( t ) d t = 1 3 e p 3 / 3 ( Γ ( 1 3 , 1 3 p 3 ) Γ ( 1 3 ) + Γ ( 2 3 , 1 3 p 3 ) Γ ( 2 3 ) ) , p > 0 ,
    9.10.16 0 e p t Bi ( t ) d t = 1 3 e p 3 / 3 ( Γ ( 2 3 , 1 3 p 3 ) Γ ( 2 3 ) Γ ( 1 3 , 1 3 p 3 ) Γ ( 1 3 ) ) , p > 0 .
    For further integrals, including the Airy transform, see §9.11(iv), Widder (1979), Prudnikov et al. (1990, §1.8.1), Prudnikov et al. (1992a, pp. 405–413), Prudnikov et al. (1992b, §4.3.25), Vallée and Soares (2010, Chapters 3, 4).
    20: 8.3 Graphics
    See accompanying text
    Figure 8.3.1: Γ ( a , x ) , a = 0. …5, 3. Magnify
    See accompanying text
    Figure 8.3.3: γ ( a , x ) , a = 1, 2, 2. 5, 3. Magnify
    See accompanying text
    Figure 8.3.8: Γ ( 0.25 , x + i y ) , 3 x 3 , 3 y 3 . … Magnify 3D Help
    See accompanying text
    Figure 8.3.9: γ ( 0.25 , x + i y ) , 3 x 3 , 3 y 3 . … Magnify 3D Help
    See accompanying text
    Figure 8.3.11: Γ ( 1 , x + i y ) , 3 x 3 , 3 y 3 . Magnify 3D Help