About the Project

”lecain” Customer service Number 1206⤄360⤄1604 contact ☎️"Number"

AdvancedHelp

(0.002 seconds)

11—20 of 237 matching pages

11: Software Index
Open Source With Book Commercial
24.21(ii) B n , B n ( x ) , E n , E n ( x ) a Derive, MuPAD
27 Functions of Number Theory
  • Research Software.

    This is software of narrow scope developed as a byproduct of a research project and subsequently made available at no cost to the public. The software is often meant to demonstrate new numerical methods or software engineering strategies which were the subject of a research project. When developed, the software typically contains capabilities unavailable elsewhere. While the software may be quite capable, it is typically not professionally packaged and its use may require some expertise. The software is typically provided as source code or via a web-based service, and no support is provided.

  • Open Source Collections and Systems.

    These are collections of software (e.g. libraries) or interactive systems of a somewhat broad scope. Contents may be adapted from research software or may be contributed by project participants who donate their services to the project. The software is made freely available to the public, typically in source code form. While formal support of the collection may not be provided by its developers, within active projects there is often a core group who donate time to consider bug reports and make updates to the collection.

  • Software Associated with Books.

    An increasing number of published books have included digital media containing software described in the book. Often, the collection of software covers a fairly broad area. Such software is typically developed by the book author. While it is not professionally packaged, it often provides a useful tool for readers to experiment with the concepts discussed in the book. The software itself is typically not formally supported by its authors.

  • 12: 27.18 Methods of Computation: Primes
    §27.18 Methods of Computation: Primes
    An overview of methods for precise counting of the number of primes not exceeding an arbitrary integer x is given in Crandall and Pomerance (2005, §3.7). …An analytic approach using a contour integral of the Riemann zeta function (§25.2(i)) is discussed in Borwein et al. (2000). … These algorithms are used for testing primality of Mersenne numbers, 2 n 1 , and Fermat numbers, 2 2 n + 1 . …
    13: 26.11 Integer Partitions: Compositions
    c ( n ) denotes the number of compositions of n , and c m ( n ) is the number of compositions into exactly m parts. c ( T , n ) is the number of compositions of n with no 1’s, where again T = { 2 , 3 , 4 , } . …
    26.11.1 c ( 0 ) = c ( T , 0 ) = 1 .
    The Fibonacci numbers are determined recursively by … Additional information on Fibonacci numbers can be found in Rosen et al. (2000, pp. 140–145).
    14: 26.6 Other Lattice Path Numbers
    §26.6 Other Lattice Path Numbers
    Delannoy Number D ( m , n )
    Motzkin Number M ( n )
    Narayana Number N ( n , k )
    §26.6(iv) Identities
    15: 24.15 Related Sequences of Numbers
    §24.15 Related Sequences of Numbers
    §24.15(i) Genocchi Numbers
    §24.15(ii) Tangent Numbers
    §24.15(iii) Stirling Numbers
    §24.15(iv) Fibonacci and Lucas Numbers
    16: 26.5 Lattice Paths: Catalan Numbers
    §26.5 Lattice Paths: Catalan Numbers
    §26.5(i) Definitions
    C ( n ) is the Catalan number. …
    §26.5(ii) Generating Function
    §26.5(iii) Recurrence Relations
    17: Bibliography W
  • E. Wagner (1990) Asymptotische Entwicklungen der Gaußschen hypergeometrischen Funktion für unbeschränkte Parameter. Z. Anal. Anwendungen 9 (4), pp. 351–360 (German).
  • S. S. Wagstaff (2002) Prime Divisors of the Bernoulli and Euler Numbers. In Number Theory for the Millennium, III (Urbana, IL, 2000), pp. 357–374.
  • G. N. Watson (1935a) Generating functions of class-numbers. Compositio Math. 1, pp. 39–68.
  • R. Wong (1982) Quadrature formulas for oscillatory integral transforms. Numer. Math. 39 (3), pp. 351–360.
  • World Combinatorics Exchange (website)
  • 18: Bibliography F
  • H. E. Fettis and J. C. Caslin (1969) A Table of the Complete Elliptic Integral of the First Kind for Complex Values of the Modulus. Part I. Technical report Technical Report ARL 69-0172, Aerospace Research Laboratories, Office of Aerospace Research, Wright-Patterson Air Force Base, Ohio.
  • S. Fillebrown (1992) Faster computation of Bernoulli numbers. J. Algorithms 13 (3), pp. 431–445.
  • A. Fletcher, J. C. P. Miller, L. Rosenhead, and L. J. Comrie (1962) An Index of Mathematical Tables. Vols. I, II. 2nd edition, Published for Scientific Computing Service Ltd., London, by Addison-Wesley Publishing Co., Inc., Reading, MA.
  • A. S. Fokas, B. Grammaticos, and A. Ramani (1993) From continuous to discrete Painlevé equations. J. Math. Anal. Appl. 180 (2), pp. 342–360.
  • Y. V. Fyodorov (2005) Introduction to the Random Matrix Theory: Gaussian Unitary Ensemble and Beyond. In Recent Perspectives in Random Matrix Theory and Number Theory, London Math. Soc. Lecture Note Ser., Vol. 322, pp. 31–78.
  • 19: 4.19 Maclaurin Series and Laurent Series
    In (4.19.3)–(4.19.9), B n are the Bernoulli numbers and E n are the Euler numbers (§§24.2(i)24.2(ii)).
    4.19.3 tan z = z + z 3 3 + 2 15 z 5 + 17 315 z 7 + + ( 1 ) n 1 2 2 n ( 2 2 n 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , | z | < 1 2 π ,
    4.19.4 csc z = 1 z + z 6 + 7 360 z 3 + 31 15120 z 5 + + ( 1 ) n 1 2 ( 2 2 n 1 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , 0 < | z | < π ,
    4.19.5 sec z = 1 + z 2 2 + 5 24 z 4 + 61 720 z 6 + + ( 1 ) n E 2 n ( 2 n ) ! z 2 n + , | z | < 1 2 π ,
    4.19.6 cot z = 1 z z 3 z 3 45 2 945 z 5 ( 1 ) n 1 2 2 n B 2 n ( 2 n ) ! z 2 n 1 , 0 < | z | < π ,
    20: 26.14 Permutations: Order Notation
    As an example, 35247816 is an element of 𝔖 8 . The inversion number is the number of pairs of elements for which the larger element precedes the smaller: … The Eulerian number, denoted n k , is the number of permutations in 𝔖 n with exactly k descents. …The Eulerian number n k is equal to the number of permutations in 𝔖 n with exactly k excedances. …
    §26.14(iii) Identities