About the Project

%E5%85%AD%E5%90%88%E5%BD%A9%E8%A7%84%E5%88%99,%E5%85%AD%E5%90%88%E5%BD%A9%E6%8A%95%E6%B3%A8%E6%8A%80%E5%B7%A7,%E9%A6%99%E6%B8%AF%E5%85%AD%E5%90%88%E5%BD%A9%E9%A2%84%E6%B5%8B,%E3%80%90%E5%85%AD%E5%90%88%E5%BD%A9%E5%AE%98%E7%BD%91%E2%88%B622kk55.com%E3%80%91%E5%85%AD%E5%90%88%E5%BD%A9%E7%BD%91%E4%B8%8A%E6%8A%95%E6%B3%A8%E5%B9%B3%E5%8F%B0,%E6%BE%B3%E9%97%A8%E5%85%AD%E5%90%88%E5%BD%A9%E7%BD%91%E4%B8%8A%E6%8A%95%E6%B3%A8%E5%9C%B0%E5%9D%80,%E9%A6%99%E6%B8%AF%E5%85%AD%E5%90%88%E5%BD%A9%E9%A2%84%E6%B5%8B,%E3%80%90%E5%85%AD%E5%90%88%E5%BD%A9%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0%E2%88%B622kk55.com%E3%80%91%E7%BD%91%E5%9D%80Zng0E0nAkC0gACg

AdvancedHelp

(0.066 seconds)

21—30 of 758 matching pages

21: 14.33 Tables
β–Ί
  • Abramowitz and Stegun (1964, Chapter 8) tabulates 𝖯 n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 3 , 9 , 10 , x = 0 ⁒ ( .01 ) ⁒ 1 , 5–8D; 𝖯 n ⁑ ( x ) for n = 1 ⁒ ( 1 ) ⁒ 4 , 9 , 10 , x = 0 ⁒ ( .01 ) ⁒ 1 , 5–7D; 𝖰 n ⁑ ( x ) and 𝖰 n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 3 , 9 , 10 , x = 0 ⁒ ( .01 ) ⁒ 1 , 6–8D; P n ⁑ ( x ) and P n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 5 , 9 , 10 , x = 1 ⁒ ( .2 ) ⁒ 10 , 6S; Q n ⁑ ( x ) and Q n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 3 , 9 , 10 , x = 1 ⁒ ( .2 ) ⁒ 10 , 6S. (Here primes denote derivatives with respect to x .)

  • β–Ί
  • Zhang and Jin (1996, Chapter 4) tabulates 𝖯 n ⁑ ( x ) for n = 2 ⁒ ( 1 ) ⁒ 5 , 10 , x = 0 ⁒ ( .1 ) ⁒ 1 , 7D; 𝖯 n ⁑ ( cos ⁑ ΞΈ ) for n = 1 ⁒ ( 1 ) ⁒ 4 , 10 , ΞΈ = 0 ⁒ ( 5 ∘ ) ⁒ 90 ∘ , 8D; 𝖰 n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 2 , 10 , x = 0 ⁒ ( .1 ) ⁒ 0.9 , 8S; 𝖰 n ⁑ ( cos ⁑ ΞΈ ) for n = 0 ⁒ ( 1 ) ⁒ 3 , 10 , ΞΈ = 0 ⁒ ( 5 ∘ ) ⁒ 90 ∘ , 8D; 𝖯 n m ⁑ ( x ) for m = 1 ⁒ ( 1 ) ⁒ 4 , n m = 0 ⁒ ( 1 ) ⁒ 2 , n = 10 , x = 0 , 0.5 , 8S; 𝖰 n m ⁑ ( x ) for m = 1 ⁒ ( 1 ) ⁒ 4 , n = 0 ⁒ ( 1 ) ⁒ 2 , 10 , 8S; 𝖯 Ξ½ m ⁑ ( cos ⁑ ΞΈ ) for m = 0 ⁒ ( 1 ) ⁒ 3 , Ξ½ = 0 ⁒ ( .25 ) ⁒ 5 , ΞΈ = 0 ⁒ ( 15 ∘ ) ⁒ 90 ∘ , 5D; P n ⁑ ( x ) for n = 2 ⁒ ( 1 ) ⁒ 5 , 10 , x = 1 ⁒ ( 1 ) ⁒ 10 , 7S; Q n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 2 , 10 , x = 2 ⁒ ( 1 ) ⁒ 10 , 8S. Corresponding values of the derivative of each function are also included, as are 6D values of the first 5 Ξ½ -zeros of 𝖯 Ξ½ m ⁑ ( cos ⁑ ΞΈ ) and of its derivative for m = 0 ⁒ ( 1 ) ⁒ 4 , ΞΈ = 10 ∘ , 30 ∘ , 150 ∘ .

  • β–Ί
  • Belousov (1962) tabulates 𝖯 n m ⁑ ( cos ⁑ ΞΈ ) (normalized) for m = 0 ⁒ ( 1 ) ⁒ 36 , n m = 0 ⁒ ( 1 ) ⁒ 56 , ΞΈ = 0 ⁒ ( 2.5 ∘ ) ⁒ 90 ∘ , 6D.

  • 22: Bibliography V
    β–Ί
  • J. Van Deun and R. Cools (2008) Integrating products of Bessel functions with an additional exponential or rational factor. Comput. Phys. Comm. 178 (8), pp. 578–590.
  • β–Ί
  • B. Ph. van Milligen and A. López Fraguas (1994) Expansion of vacuum magnetic fields in toroidal harmonics. Comput. Phys. Comm. 81 (1-2), pp. 74–90.
  • β–Ί
  • A. Verma and V. K. Jain (1983) Certain summation formulae for q -series. J. Indian Math. Soc. (N.S.) 47 (1-4), pp. 71–85 (1986).
  • β–Ί
  • L. Vietoris (1983) Dritter Beweis der die unvollständige Gammafunktion betreffenden Lochsschen Ungleichungen. Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 192 (1-3), pp. 83–91 (German).
  • β–Ί
  • H. Volkmer (2023) Asymptotic expansion of the generalized hypergeometric function F q p ⁒ ( z ) as z for p < q . Anal. Appl. (Singap.) 21 (2), pp. 535–545.
  • 23: Bibliography S
    β–Ί
  • C. W. Schelin (1983) Calculator function approximation. Amer. Math. Monthly 90 (5), pp. 317–325.
  • β–Ί
  • B. I. Schneider, J. Segura, A. Gil, X. Guan, and K. Bartschat (2010) A new Fortran 90 program to compute regular and irregular associated Legendre functions. Comput. Phys. Comm. 181 (12), pp. 2091–2097.
  • β–Ί
  • L. Shen (1981) The elliptical microstrip antenna with circular polarization. IEEE Trans. Antennas and Propagation 29 (1), pp. 90–94.
  • β–Ί
  • D. M. Smith (2001) Algorithm 814: Fortran 90 software for floating-point multiple precision arithmetic, gamma and related functions. ACM Trans. Math. Software 27 (4), pp. 377–387.
  • β–Ί
  • R. Spigler (1980) Some results on the zeros of cylindrical functions and of their derivatives. Rend. Sem. Mat. Univ. Politec. Torino 38 (1), pp. 67–85 (Italian. English summary).
  • 24: Bibliography C
    β–Ί
  • L. G. Cabral-Rosetti and M. A. Sanchis-Lozano (2000) Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams. J. Comput. Appl. Math. 115 (1-2), pp. 93–99.
  • β–Ί
  • B. C. Carlson and J. FitzSimons (2000) Reduction theorems for elliptic integrands with the square root of two quadratic factors. J. Comput. Appl. Math. 118 (1-2), pp. 71–85.
  • β–Ί
  • M. A. Chaudhry and S. M. Zubair (1994) Generalized incomplete gamma functions with applications. J. Comput. Appl. Math. 55 (1), pp. 99–124.
  • β–Ί
  • W. J. Cody (1965b) Chebyshev polynomial expansions of complete elliptic integrals. Math. Comp. 19 (90), pp. 249–259.
  • β–Ί
  • J. W. Cooley and J. W. Tukey (1965) An algorithm for the machine calculation of complex Fourier series. Math. Comp. 19 (90), pp. 297–301.
  • 25: 29.20 Methods of Computation
    β–ΊThe normalization of Lamé functions given in §29.3(v) can be carried out by quadrature (§3.5). … β–ΊInitial approximations to the eigenvalues can be found, for example, from the asymptotic expansions supplied in §29.7(i). …The Fourier series may be summed using Clenshaw’s algorithm; see §3.11(ii). … β–ΊThese matrices are the same as those provided in §29.15(i) for the computation of Lamé polynomials with the difference that n has to be chosen sufficiently large. … β–ΊAlternatively, the zeros can be found by locating the maximum of function g in (29.12.11).
    26: 26.12 Plane Partitions
    β–ΊAn equivalent definition is that a plane partition is a finite subset of β„• × β„• × β„• with the property that if ( r , s , t ) Ο€ and ( 1 , 1 , 1 ) ( h , j , k ) ( r , s , t ) , then ( h , j , k ) must be an element of Ο€ . …It is useful to be able to visualize a plane partition as a pile of blocks, one block at each lattice point ( h , j , k ) Ο€ . … β–ΊWe define the r × s × t box B ⁑ ( r , s , t ) as …Then the number of plane partitions in B ⁑ ( r , s , t ) is … β–ΊThe number of symmetric plane partitions in B ⁑ ( r , r , t ) is …
    27: 22.21 Tables
    β–ΊSpenceley and Spenceley (1947) tabulates sn ⁑ ( K ⁑ ⁒ x , k ) , cn ⁑ ( K ⁑ ⁒ x , k ) , dn ⁑ ( K ⁑ ⁒ x , k ) , am ⁑ ( K ⁑ ⁒ x , k ) , β„° ⁑ ( K ⁑ ⁒ x , k ) for arcsin ⁑ k = 1 ∘ ⁒ ( 1 ∘ ) ⁒ 89 ∘ and x = 0 ⁒ ( 1 90 ) ⁒ 1 to 12D, or 12 decimals of a radian in the case of am ⁑ ( K ⁑ ⁒ x , k ) . … β–ΊTables of theta functions (§20.15) can also be used to compute the twelve Jacobian elliptic functions by application of the quotient formulas given in §22.2.
    28: Bibliography M
    β–Ί
  • P. Martín, R. Pérez, and A. L. Guerrero (1992) Two-point quasi-fractional approximations to the Airy function Ai ⁒ ( x ) . J. Comput. Phys. 99 (2), pp. 337–340.
  • β–Ί
  • D. W. Matula and P. Kornerup (1980) Foundations of Finite Precision Rational Arithmetic. In Fundamentals of Numerical Computation (Computer-oriented Numerical Analysis), G. Alefeld and R. D. Grigorieff (Eds.), Comput. Suppl., Vol. 2, Vienna, pp. 85–111.
  • β–Ί
  • P. Midy (1975) An improved calculation of the general elliptic integral of the second kind in the neighbourhood of x = 0 . Numer. Math. 25 (1), pp. 99–101.
  • β–Ί
  • A. R. Miller (1997) A class of generalized hypergeometric summations. J. Comput. Appl. Math. 87 (1), pp. 79–85.
  • β–Ί
  • S. C. Milne (1985c) A new symmetry related to π‘†π‘ˆ ⁒ ( n ) for classical basic hypergeometric series. Adv. in Math. 57 (1), pp. 71–90.
  • 29: 19.11 Addition Theorems
    β–Ί
    19.11.1 F ⁑ ( ΞΈ , k ) + F ⁑ ( Ο• , k ) = F ⁑ ( ψ , k ) ,
    β–Ί β–Ί
    19.11.6_5 R C ⁑ ( Ξ³ Ξ΄ , Ξ³ ) = 1 Ξ΄ ⁒ arctan ⁑ ( Ξ΄ ⁒ sin ⁑ ΞΈ ⁒ sin ⁑ Ο• ⁒ sin ⁑ ψ Ξ± 2 1 Ξ± 2 ⁒ cos ⁑ ΞΈ ⁒ cos ⁑ Ο• ⁒ cos ⁑ ψ ) .
    β–ΊHence, care has to be taken with the multivalued functions in (19.11.5). … β–Ί
    30: 25.16 Mathematical Applications
    β–ΊIn studying the distribution of primes p x , Chebyshev (1851) introduced a function ψ ⁑ ( x ) (not to be confused with the digamma function used elsewhere in this chapter), given by … β–Ίwhere H n is given by (25.11.33). β–Ί H ⁑ ( s ) is analytic for ⁑ s > 1 , and can be extended meromorphically into the half-plane ⁑ s > 2 ⁒ k for every positive integer k by use of the relations … β–ΊFor integer s ( 2 ), H ⁑ ( s ) can be evaluated in terms of the zeta function: … β–Ί H ⁑ ( s ) has a simple pole with residue ΞΆ ⁑ ( 1 2 ⁒ r ) ( = B 2 ⁒ r / ( 2 ⁒ r ) ) at each odd negative integer s = 1 2 ⁒ r , r = 1 , 2 , 3 , . …