About the Project

boundary-value%20methods

AdvancedHelp

(0.002 seconds)

31—40 of 228 matching pages

31: 34.13 Methods of Computation
§34.13 Methods of Computation
β–ΊMethods of computation for 3 ⁒ j and 6 ⁒ j symbols include recursion relations, see Schulten and Gordon (1975a), Luscombe and Luban (1998), and Edmonds (1974, pp. 42–45, 48–51, 97–99); summation of single-sum expressions for these symbols, see Varshalovich et al. (1988, §§8.2.6, 9.2.1) and Fang and Shriner (1992); evaluation of the generalized hypergeometric functions of unit argument that represent these symbols, see Srinivasa Rao and Venkatesh (1978) and Srinivasa Rao (1981). β–ΊFor 9 ⁒ j symbols, methods include evaluation of the single-sum series (34.6.2), see Fang and Shriner (1992); evaluation of triple-sum series, see Varshalovich et al. (1988, §10.2.1) and Srinivasa Rao et al. (1989). A review of methods of computation is given in Srinivasa Rao and Rajeswari (1993, Chapter VII, pp. 235–265). …
32: 32.17 Methods of Computation
§32.17 Methods of Computation
β–ΊThe Painlevé equations can be integrated by Runge–Kutta methods for ordinary differential equations; see §3.7(v), Hairer et al. (2000), and Butcher (2003). …
33: Bibliography G
β–Ί
  • B. Gabutti (1979) On high precision methods for computing integrals involving Bessel functions. Math. Comp. 33 (147), pp. 1049–1057.
  • β–Ί
  • B. Gabutti (1980) On the generalization of a method for computing Bessel function integrals. J. Comput. Appl. Math. 6 (2), pp. 167–168.
  • β–Ί
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • β–Ί
  • M. L. Glasser (1979) A method for evaluating certain Bessel integrals. Z. Angew. Math. Phys. 30 (4), pp. 722–723.
  • β–Ί
  • B. Guo (1998) Spectral Methods and Their Applications. World Scientific Publishing Co. Inc., River Edge, NJ-Singapore.
  • 34: 19.36 Methods of Computation
    §19.36 Methods of Computation
    β–Ί
    §19.36(i) Duplication Method
    β–ΊFor computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). … β–Ί
    §19.36(iv) Other Methods
    β–ΊNumerical quadrature is slower than most methods for the standard integrals but can be useful for elliptic integrals that have complicated representations in terms of standard integrals. …
    35: 29.20 Methods of Computation
    §29.20 Methods of Computation
    β–ΊA second approach is to solve the continued-fraction equations typified by (29.3.10) by Newton’s rule or other iterative methods; see §3.8. … β–ΊA third method is to approximate eigenvalues and Fourier coefficients of Lamé functions by eigenvalues and eigenvectors of finite matrices using the methods of §§3.2(vi) and 3.8(iv). …The numerical computations described in Jansen (1977) are based in part upon this method. β–ΊA fourth method is by asymptotic approximations by zeros of orthogonal polynomials of increasing degree. …
    36: Bibliography B
    β–Ί
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • β–Ί
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • β–Ί
  • E. A. Bender (1974) Asymptotic methods in enumeration. SIAM Rev. 16 (4), pp. 485–515.
  • β–Ί
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • β–Ί
  • Å. Björck (1996) Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • 37: Bibliography D
    β–Ί
  • P. J. Davis and P. Rabinowitz (1984) Methods of Numerical Integration. 2nd edition, Computer Science and Applied Mathematics, Academic Press Inc., Orlando, FL.
  • β–Ί
  • N. G. de Bruijn (1961) Asymptotic Methods in Analysis. 2nd edition, Bibliotheca Mathematica, Vol. IV, North-Holland Publishing Co., Amsterdam.
  • β–Ί
  • A. Debosscher (1998) Unification of one-dimensional Fokker-Planck equations beyond hypergeometrics: Factorizer solution method and eigenvalue schemes. Phys. Rev. E (3) 57 (1), pp. 252–275.
  • β–Ί
  • B. Deconinck and J. N. Kutz (2006) Computing spectra of linear operators using the Floquet-Fourier-Hill method. J. Comput. Phys. 219 (1), pp. 296–321.
  • β–Ί
  • K. Dekker and J. G. Verwer (1984) Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations. CWI Monographs, Vol. 2, North-Holland Publishing Co., Amsterdam.
  • 38: Bibliography P
    β–Ί
  • R. B. Paris (2004) Exactification of the method of steepest descents: The Bessel functions of large order and argument. Proc. Roy. Soc. London Ser. A 460, pp. 2737–2759.
  • β–Ί
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • β–Ί
  • R. Piessens and M. Branders (1983) Modified Clenshaw-Curtis method for the computation of Bessel function integrals. BIT 23 (3), pp. 370–381.
  • β–Ί
  • R. Piessens and M. Branders (1985) A survey of numerical methods for the computation of Bessel function integrals. Rend. Sem. Mat. Univ. Politec. Torino (Special Issue), pp. 249–265.
  • β–Ί
  • M. Puoskari (1988) A method for computing Bessel function integrals. J. Comput. Phys. 75 (2), pp. 334–344.
  • 39: Bibliography M
    β–Ί
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • β–Ί
  • P. L. Marston (1992) Geometrical and Catastrophe Optics Methods in Scattering. In Physical Acoustics, A. D. Pierce and R. N. Thurston (Eds.), Vol. 21, pp. 1–234.
  • β–Ί
  • J. M. McNamee (2007) Numerical Methods for Roots of Polynomials. Part I. Studies in Computational Mathematics, Vol. 14, Elsevier, Amsterdam.
  • β–Ί
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • β–Ί
  • S. L. B. Moshier (1989) Methods and Programs for Mathematical Functions. Ellis Horwood Ltd., Chichester.
  • 40: 8 Incomplete Gamma and Related
    Functions