About the Project

莱斯布里奇大学学历认证【购证 微kaa77788】big

AdvancedHelp

(0.001 seconds)

21—30 of 93 matching pages

21: 13.9 Zeros
13.9.8 ϕ r = j b 1 , r 2 2 b 4 a ( 1 + 2 b ( b 2 ) + j b 1 , r 2 3 ( 2 b 4 a ) 2 ) + O ( 1 a 5 ) ,
13.9.9 z = ± ( 2 n + a ) π i + ln ( Γ ( a ) Γ ( b a ) ( ± 2 n π i ) b 2 a ) + O ( n 1 ln n ) ,
13.9.10 a = π 2 4 z ( n 2 + ( b 3 2 ) n ) 1 16 z ( ( b 3 2 ) 2 π 2 + 4 3 z 2 8 b ( z 1 ) 4 b 2 3 ) + O ( n 1 ) ,
13.9.16 a = n 2 π z n 2 z π 2 + 1 2 b + 1 4 + z 2 ( 1 3 4 π 2 ) + z ( b 1 ) 2 + 1 4 4 π z n + O ( 1 n ) ,
22: 14.15 Uniform Asymptotic Approximations
14.15.1 𝖯 ν μ ( ± x ) = ( 1 x 1 ± x ) μ / 2 ( j = 0 J 1 ( ν + 1 ) j ( ν ) j j ! Γ ( j + 1 + μ ) ( 1 x 2 ) j + O ( 1 Γ ( J + 1 + μ ) ) )
14.15.3 𝑸 ν μ ( x ) = 1 μ ν + ( 1 / 2 ) ( π u 2 ) 1 / 2 I ν + 1 2 ( μ u ) ( 1 + O ( 1 μ ) ) ,
14.15.17 P ν μ ( x ) = β ( α 2 y x 2 1 + α 2 ) 1 / 4 I μ ( ( ν + 1 2 ) | y | 1 / 2 ) ( 1 + O ( 1 ν ) ) ,
23: 15.12 Asymptotic Approximations
15.12.5 𝐅 ( a + λ , b λ c ; 1 2 1 2 z ) = 2 ( a + b 1 ) / 2 ( z + 1 ) ( c a b 1 ) / 2 ( z 1 ) c / 2 ζ sinh ζ ( λ + 1 2 a 1 2 b ) 1 c ( I c 1 ( ( λ + 1 2 a 1 2 b ) ζ ) ( 1 + O ( λ 2 ) ) + I c 2 ( ( λ + 1 2 a 1 2 b ) ζ ) 2 λ + a b ( ( c 1 2 ) ( c 3 2 ) ( 1 ζ coth ζ ) + 1 2 ( 2 c a b 1 ) ( a + b 1 ) tanh ( 1 2 ζ ) + O ( λ 2 ) ) ) ,
15.12.7 F ( a , b λ c + λ ; z ) = 2 b c + ( 1 / 2 ) ( z + 1 2 z ) λ ( λ a / 2 U ( a 1 2 , α λ ) ( ( 1 + z ) c a b z 1 c ( α z 1 ) 1 a + O ( λ 1 ) ) + λ ( a 1 ) / 2 α U ( a 3 2 , α λ ) ( ( 1 + z ) c a b z 1 c ( α z 1 ) 1 a 2 c b ( 1 / 2 ) ( α z 1 ) a + O ( λ 1 ) ) ) ,
15.12.9 ( z + 1 ) 3 λ / 2 ( 2 λ ) c 1 𝐅 ( a + λ , b + 2 λ c ; z ) = λ 1 / 3 ( e π i ( a c + λ + ( 1 / 3 ) ) Ai ( e 2 π i / 3 λ 2 / 3 β 2 ) + e π i ( c a λ ( 1 / 3 ) ) Ai ( e 2 π i / 3 λ 2 / 3 β 2 ) ) ( a 0 ( ζ ) + O ( λ 1 ) ) + λ 2 / 3 ( e π i ( a c + λ + ( 2 / 3 ) ) Ai ( e 2 π i / 3 λ 2 / 3 β 2 ) + e π i ( c a λ ( 2 / 3 ) ) Ai ( e 2 π i / 3 λ 2 / 3 β 2 ) ) ( a 1 ( ζ ) + O ( λ 1 ) ) ,
24: 2.10 Sums and Sequences
2.10.12 | S ( α , β , n ) | j = 1 n 1 j α = O ( 1 ) , O ( ln n ) ,  or  O ( n α + 1 ) ,
2.10.17 S ( α , β , n ) = O ( n α ) + O ( 1 ) .
2.10.18 S ( α , β , n ) = e i n β e i β 1 n α + O ( n α 1 ) + O ( 1 ) , n ,
  • (b´)

    On the circle | z | = r , the function f ( z ) g ( z ) has a finite number of singularities, and at each singularity z j , say,

    2.10.30 f ( z ) g ( z ) = O ( ( z z j ) σ j 1 ) , z z j ,

    where σ j is a positive constant.

  • 2.10.32 f ( m ) ( z ) g ( m ) ( z ) = O ( ( z z j ) σ j 1 ) ,
    25: 18.15 Asymptotic Approximations
    18.15.7 ε M ( ρ , θ ) = { θ O ( ρ 2 M ( 3 / 2 ) ) , c ρ 1 θ π δ , θ α + ( 5 / 2 ) O ( ρ 2 M + α ) , 0 θ c ρ 1 ,
    18.15.12 P n ( cos θ ) = ( 2 sin θ ) 1 2 m = 0 M 1 ( 1 2 m ) ( m 1 2 n ) cos α n , m ( 2 sin θ ) m + O ( 1 n M + 1 2 ) ,
    18.15.14 L n ( α ) ( x ) = n 1 2 α 1 4 e 1 2 x π 1 2 x 1 2 α + 1 4 ( cos θ n ( α ) ( x ) ( m = 0 M 1 a m ( x ) n 1 2 m + O ( 1 n 1 2 M ) ) + sin θ n ( α ) ( x ) ( m = 1 M 1 b m ( x ) n 1 2 m + O ( 1 n 1 2 M ) ) ) ,
    18.15.22 L n ( α ) ( ν x ) = ( 1 ) n e 1 2 ν x 2 α 1 2 x 1 2 α + 1 4 ( ζ x 1 ) 1 4 ( Ai ( ν 2 3 ζ ) ν 1 3 m = 0 M 1 E m ( ζ ) ν 2 m + Ai ( ν 2 3 ζ ) ν 5 3 m = 0 M 1 F m ( ζ ) ν 2 m + envAi ( ν 2 3 ζ ) O ( 1 ν 2 M 2 3 ) ) ,
    18.15.27 H n ( x ) = λ n e 1 2 x 2 ( m = 0 M 1 u m ( x ) cos ω n , m ( x ) μ 1 2 m + O ( 1 μ 1 2 M ) ) ,
    26: 13.2 Definitions and Basic Properties
    13.2.15 U ( n + b 1 , b , z ) = ( 1 ) n ( 2 b ) n z 1 b + O ( z 2 b ) .
    13.2.17 U ( a , 2 , z ) = 1 Γ ( a ) z 1 + O ( ln z ) ,
    13.2.21 U ( a , 0 , z ) = 1 Γ ( a + 1 ) + O ( z ln z ) ,
    27: 10.41 Asymptotic Expansions for Large Order
    10.41.12 I ν ( ν z ) = e ν η ( 2 π ν ) 1 2 ( 1 + z 2 ) 1 4 ( k = 0 1 U k ( p ) ν k + O ( 1 z ) ) , | ph z | 1 2 π δ ,
    10.41.13 K ν ( ν z ) = ( π 2 ν ) 1 2 e ν η ( 1 + z 2 ) 1 4 ( k = 0 1 ( 1 ) k U k ( p ) ν k + O ( 1 z ) ) , | ph z | 3 2 π δ .
    10.41.14 J ν ( ν z ) = ( 4 ζ 1 z 2 ) 1 4 ( Ai ( ν 2 3 ζ ) ν 1 3 ( k = 0 A k ( ζ ) ν 2 k + O ( 1 ζ 3 + 3 ) ) + Ai ( ν 2 3 ζ ) ν 5 3 ( k = 0 1 B k ( ζ ) ν 2 k + O ( 1 ζ 3 + 1 ) ) ) ,
    10.41.15 Y ν ( ν z ) = ( 4 ζ 1 z 2 ) 1 4 ( Bi ( ν 2 3 ζ ) ν 1 3 ( k = 0 A k ( ζ ) ν 2 k + O ( 1 ζ 3 + 3 ) ) + Bi ( ν 2 3 ζ ) ν 5 3 ( k = 0 1 B k ( ζ ) ν 2 k + O ( 1 ζ 3 + 1 ) ) ) ,
    28: 2.8 Differential Equations with a Parameter
    2.8.11 W n , 1 ( u , ξ ) = e u ξ ( s = 0 n 1 A s ( ξ ) u s + O ( 1 u n ) ) , ξ 𝚫 1 ( α 1 ) ,
    2.8.12 W n , 2 ( u , ξ ) = e u ξ ( s = 0 n 1 ( 1 ) s A s ( ξ ) u s + O ( 1 u n ) ) , ξ 𝚫 2 ( α 2 ) ,
    2.8.15 W n , 1 ( u , ξ ) = Ai ( u 2 / 3 ξ ) ( s = 0 n 1 A s ( ξ ) u 2 s + O ( 1 u 2 n 1 ) ) + Ai ( u 2 / 3 ξ ) ( s = 0 n 2 B s ( ξ ) u 2 s + ( 4 / 3 ) + O ( 1 u 2 n 1 ) ) ,
    2.8.16 W n , 2 ( u , ξ ) = Bi ( u 2 / 3 ξ ) ( s = 0 n 1 A s ( ξ ) u 2 s + O ( 1 u 2 n 1 ) ) + Bi ( u 2 / 3 ξ ) ( s = 0 n 2 B s ( ξ ) u 2 s + ( 4 / 3 ) + O ( 1 u 2 n 1 ) ) .
    2.8.29 W n , 3 ( u , ξ ) = | ξ | 1 / 2 J ν ( u | ξ | 1 / 2 ) ( s = 0 n 1 A s ( ξ ) u 2 s + O ( 1 u 2 n 1 ) ) | ξ | J ν + 1 ( u | ξ | 1 / 2 ) ( s = 0 n 2 B s ( ξ ) u 2 s + 1 + O ( 1 u 2 n 2 ) ) ,
    29: 10.52 Limiting Forms
    𝗃 n ( z ) = z 1 sin ( z 1 2 n π ) + e | z | O ( z 2 ) ,
    𝗒 n ( z ) = z 1 cos ( z 1 2 n π ) + e | z | O ( z 2 ) ,
    30: 10.68 Modulus and Phase Functions
    10.68.16 M ν ( x ) = e x / 2 ( 2 π x ) 1 2 ( 1 μ 1 8 2 1 x + ( μ 1 ) 2 256 1 x 2 ( μ 1 ) ( μ 2 + 14 μ 399 ) 6144 2 1 x 3 + O ( 1 x 4 ) ) ,
    10.68.17 ln M ν ( x ) = x 2 1 2 ln ( 2 π x ) μ 1 8 2 1 x ( μ 1 ) ( μ 25 ) 384 2 1 x 3 ( μ 1 ) ( μ 13 ) 128 1 x 4 + O ( 1 x 5 ) ,
    10.68.18 θ ν ( x ) = x 2 + ( 1 2 ν 1 8 ) π + μ 1 8 2 1 x + μ 1 16 1 x 2 ( μ 1 ) ( μ 25 ) 384 2 1 x 3 + O ( 1 x 5 ) .
    10.68.20 ln N ν ( x ) = x 2 + 1 2 ln ( π 2 x ) + μ 1 8 2 1 x + ( μ 1 ) ( μ 25 ) 384 2 1 x 3 ( μ 1 ) ( μ 13 ) 128 1 x 4 + O ( 1 x 5 ) ,
    10.68.21 ϕ ν ( x ) = x 2 ( 1 2 ν + 1 8 ) π μ 1 8 2 1 x + μ 1 16 1 x 2 + ( μ 1 ) ( μ 25 ) 384 2 1 x 3 + O ( 1 x 5 ) .