About the Project

Ferrers functions

AdvancedHelp

(0.002 seconds)

1—10 of 48 matching pages

1: 14.1 Special Notation
§14.1 Special Notation
The main functions treated in this chapter are the Legendre functions 𝖯 ν ( x ) , 𝖰 ν ( x ) , P ν ( z ) , Q ν ( z ) ; Ferrers functions 𝖯 ν μ ( x ) , 𝖰 ν μ ( x ) (also known as the Legendre functions on the cut); associated Legendre functions P ν μ ( z ) , Q ν μ ( z ) , 𝑸 ν μ ( z ) ; conical functions 𝖯 1 2 + i τ μ ( x ) , 𝖰 1 2 + i τ μ ( x ) , 𝖰 ^ 1 2 + i τ μ ( x ) , P 1 2 + i τ μ ( x ) , Q 1 2 + i τ μ ( x ) (also known as Mehler functions). …
2: 14.32 Methods of Computation
§14.32 Methods of Computation
3: 14.7 Integer Degree and Order
§14.7 Integer Degree and Order
§14.7(ii) Rodrigues-Type Formulas
§14.7(iii) Reflection Formulas
§14.7(iv) Generating Functions
4: 14.17 Integrals
§14.17(i) Indefinite Integrals
§14.17(ii) Barnes’ Integral
§14.17(iii) Orthogonality Properties
§14.17(v) Laplace Transforms
§14.17(vi) Mellin Transforms
5: 14.5 Special Values
§14.5 Special Values
14.5.7 𝖰 0 ( x ) = 1 2 ln ( 1 + x 1 x ) ,
14.5.8 𝖰 1 ( x ) = x 2 ln ( 1 + x 1 x ) 1 .
§14.5(v) μ = 0 , ν = ± 1 2
6: 14.10 Recurrence Relations and Derivatives
§14.10 Recurrence Relations and Derivatives
14.10.1 𝖯 ν μ + 2 ( x ) + 2 ( μ + 1 ) x ( 1 x 2 ) 1 / 2 𝖯 ν μ + 1 ( x ) + ( ν μ ) ( ν + μ + 1 ) 𝖯 ν μ ( x ) = 0 ,
14.10.2 ( 1 x 2 ) 1 / 2 𝖯 ν μ + 1 ( x ) ( ν μ + 1 ) 𝖯 ν + 1 μ ( x ) + ( ν + μ + 1 ) x 𝖯 ν μ ( x ) = 0 ,
14.10.3 ( ν μ + 2 ) 𝖯 ν + 2 μ ( x ) ( 2 ν + 3 ) x 𝖯 ν + 1 μ ( x ) + ( ν + μ + 1 ) 𝖯 ν μ ( x ) = 0 ,
14.10.4 ( 1 x 2 ) d 𝖯 ν μ ( x ) d x = ( μ ν 1 ) 𝖯 ν + 1 μ ( x ) + ( ν + 1 ) x 𝖯 ν μ ( x ) ,
7: 14.4 Graphics
§14.4(i) Ferrers Functions: 2D Graphs
§14.4(ii) Ferrers Functions: 3D Surfaces
See accompanying text
Figure 14.4.15: 𝖯 0 μ ( x ) , 0 μ 10 , 1 < x < 1 . Magnify 3D Help
See accompanying text
Figure 14.4.16: 𝖰 0 μ ( x ) , 0 μ 6.2 , 1 < x < 1 . Magnify 3D Help
8: 14.18 Sums
§14.18 Sums
§14.18(ii) Addition Theorems
14.18.3 𝖰 ν ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 cos ϕ ) = 𝖯 ν ( cos θ 1 ) 𝖰 ν ( cos θ 2 ) + 2 m = 1 ( 1 ) m 𝖯 ν m ( cos θ 1 ) 𝖰 ν m ( cos θ 2 ) cos ( m ϕ ) .
The formulas are also valid with the Ferrers functions as in §14.3(i) with μ = 0 . …
9: 14.9 Connection Formulas
§14.9(i) Connections Between 𝖯 ν ± μ ( x ) , 𝖯 ν 1 ± μ ( x ) , 𝖰 ν ± μ ( x ) , 𝖰 ν 1 μ ( x )
14.9.3 𝖯 ν m ( x ) = ( 1 ) m Γ ( ν m + 1 ) Γ ( ν + m + 1 ) 𝖯 ν m ( x ) ,
14.9.4 𝖰 ν m ( x ) = ( 1 ) m Γ ( ν m + 1 ) Γ ( ν + m + 1 ) 𝖰 ν m ( x ) , ν m 1 , m 2 , .
§14.9(ii) Connections Between 𝖯 ν ± μ ( ± x ) , 𝖰 ν μ ( ± x ) , 𝖰 ν μ ( x )
14.9.9 2 Γ ( ν + μ + 1 ) Γ ( μ ν ) 𝖰 ν μ ( x ) = cos ( ν π ) 𝖯 ν μ ( x ) + cos ( μ π ) 𝖯 ν μ ( x ) ,
10: 14.6 Integer Order
§14.6 Integer Order
14.6.6 𝖯 ν m ( x ) = ( 1 x 2 ) m / 2 x 1 x 1 𝖯 ν ( x ) ( d x ) m .