About the Project
NIST

Neumann integral

AdvancedHelp

(0.001 seconds)

5 matching pages

1: 14.12 Integral Representations
Neumann’s Integral
2: 10.9 Integral Representations
Neumann’s Integral
3: 10.23 Sums
10.23.11 a k = 1 2 π i | z | = c f ( t ) O k ( t ) d t , 0 < c < c ,
4: Bibliography S
  • I. Shavitt and M. Karplus (1965) Gaussian-transform method for molecular integrals. I. Formulation for energy integrals. J. Chem. Phys. 43 (2), pp. 398–414.
  • B. L. Shea (1988) Algorithm AS 239. Chi-squared and incomplete gamma integral. Appl. Statist. 37 (3), pp. 466–473.
  • I. Sh. Slavutskiĭ (1995) Staudt and arithmetical properties of Bernoulli numbers. Historia Sci. (2) 5 (1), pp. 69–74.
  • B. D. Sleeman (1969) Non-linear integral equations for Heun functions. Proc. Edinburgh Math. Soc. (2) 16, pp. 281–289.
  • I. N. Sneddon (1972) The Use of Integral Transforms. McGraw-Hill, New York.
  • 5: 10.44 Sums
    Neumann’s Addition Theorem
    §10.44(iii) Neumann-Type Expansions
    §10.44(iv) Compendia