About the Project

Romanovski–Bessel polynomials

AdvancedHelp

(0.002 seconds)

4 matching pages

1: 18.34 Bessel Polynomials
Hence the full system of polynomials y n ( x ; a ) cannot be orthogonal on the line with respect to a positive weight function, but this is possible for a finite system of such polynomials, the RomanovskiBessel polynomials, if a < 1 :
18.34.5_5 2 1 a Γ ( 1 a ) 0 y n ( x ; a ) y m ( x ; a ) x a 2 e 2 x 1 d x = 1 a 1 a 2 n n ! ( 2 a n ) n δ n , m , m , n = 0 , 1 , , N = ( 1 + a ) / 2 .
expressed in terms of RomanovskiBessel polynomials, Laguerre polynomials or Whittaker functions, we have …In this limit the finite system of Jacobi polynomials P n ( α , β ) ( x ) which is orthogonal on ( 1 , ) (see §18.3) tends to the finite system of RomanovskiBessel polynomials which is orthogonal on ( 0 , ) (see (18.34.5_5)). …
2: 18.39 Applications in the Physical Sciences
The functions ϕ n are expressed in terms of RomanovskiBessel polynomials, or Laguerre polynomials by (18.34.7_1). The finite system of functions ψ n is orthonormal in L 2 ( , d x ) , see (18.34.7_3). …
3: 18.3 Definitions
§18.3 Definitions
For explicit power series coefficients up to n = 12 for these polynomials and for coefficients up to n = 6 for Jacobi and ultraspherical polynomials see Abramowitz and Stegun (1964, pp. 793–801). … For ν and N > 1 2 a finite system of Jacobi polynomials P n ( N 1 + i ν , N 1 i ν ) ( i x ) (called pseudo Jacobi polynomials or Routh–Romanovski polynomials) is orthogonal on ( , ) with w ( x ) = ( 1 + x 2 ) N 1 e 2 ν arctan x . …
Bessel polynomials
Bessel polynomials are often included among the classical OP’s. …
4: Bibliography R
  • Yu. L. Ratis and P. Fernández de Córdoba (1993) A code to calculate (high order) Bessel functions based on the continued fractions method. Comput. Phys. Comm. 76 (3), pp. 381–388.
  • F. E. Relton (1965) Applied Bessel Functions. Dover Publications Inc., New York.
  • G. F. Remenets (1973) Computation of Hankel (Bessel) functions of complex index and argument by numerical integration of a Schläfli contour integral. Ž. Vyčisl. Mat. i Mat. Fiz. 13, pp. 1415–1424, 1636.
  • M. D. Rogers (2005) Partial fractions expansions and identities for products of Bessel functions. J. Math. Phys. 46 (4), pp. 043509–1–043509–18.
  • V. Romanovski (1929) Sur quelques classes nouvelles de polynômes orthogonaux. C. R. Acad. Sci. Paris 188, pp. 1023–1025.