About the Project

Buy cosec -- endlich -- online over the counterpart cnoidale price 1g

AdvancedHelp

(0.010 seconds)

1—10 of 849 matching pages

1: 4.16 Elementary Properties
Table 4.16.2: Trigonometric functions: quarter periods and change of sign.
x θ 1 2 π ± θ π ± θ 3 2 π ± θ 2 π ± θ
csc x csc θ sec θ csc θ sec θ ± csc θ
sec x sec θ csc θ sec θ ± csc θ sec θ
Table 4.16.3: Trigonometric functions: interrelations. …
sin θ = a cos θ = a tan θ = a csc θ = a sec θ = a cot θ = a
sin θ a ( 1 a 2 ) 1 / 2 a ( 1 + a 2 ) 1 / 2 a 1 a 1 ( a 2 1 ) 1 / 2 ( 1 + a 2 ) 1 / 2
cos θ ( 1 a 2 ) 1 / 2 a ( 1 + a 2 ) 1 / 2 a 1 ( a 2 1 ) 1 / 2 a 1 a ( 1 + a 2 ) 1 / 2
tan θ a ( 1 a 2 ) 1 / 2 a 1 ( 1 a 2 ) 1 / 2 a ( a 2 1 ) 1 / 2 ( a 2 1 ) 1 / 2 a 1
2: 10.34 Analytic Continuation
10.34.3 I ν ( z e m π i ) = ( i / π ) ( ± e m ν π i K ν ( z e ± π i ) e ( m 1 ) ν π i K ν ( z ) ) ,
10.34.4 K ν ( z e m π i ) = csc ( ν π ) ( ± sin ( m ν π ) K ν ( z e ± π i ) sin ( ( m 1 ) ν π ) K ν ( z ) ) .
10.34.5 K n ( z e m π i ) = ( 1 ) m n K n ( z ) + ( 1 ) n ( m 1 ) 1 m π i I n ( z ) ,
10.34.6 K n ( z e m π i ) = ± ( 1 ) n ( m 1 ) m K n ( z e ± π i ) ( 1 ) n m ( m 1 ) K n ( z ) .
3: 4.24 Inverse Trigonometric Functions: Further Properties
4.24.2 arccos z = ( 2 ( 1 z ) ) 1 / 2 ( 1 + n = 1 1 3 5 ( 2 n 1 ) 2 2 n ( 2 n + 1 ) n ! ( 1 z ) n ) , | 1 z | 2 .
4.24.5 arctan z = z z 2 + 1 ( 1 + 2 3 z 2 1 + z 2 + 2 4 3 5 ( z 2 1 + z 2 ) 2 + ) , ( z 2 ) > 1 2 ,
4.24.10 d d z arccsc z = 1 z ( z 2 1 ) 1 / 2 , z 0 .
4.24.14 Arccos u ± Arccos v = Arccos ( u v ( ( 1 u 2 ) ( 1 v 2 ) ) 1 / 2 ) ,
4.24.16 Arcsin u ± Arccos v = Arcsin ( u v ± ( ( 1 u 2 ) ( 1 v 2 ) ) 1 / 2 ) = Arccos ( v ( 1 u 2 ) 1 / 2 u ( 1 v 2 ) 1 / 2 ) ,
4: 4.38 Inverse Hyperbolic Functions: Further Properties
4.38.2 arcsinh z = ln ( 2 z ) + 1 2 1 2 z 2 1 3 2 4 1 4 z 4 + 1 3 5 2 4 6 1 6 z 6 , z > 0 , | z | > 1 .
4.38.3 arccosh z = ln ( 2 z ) 1 2 1 2 z 2 1 3 2 4 1 4 z 4 1 3 5 2 4 6 1 6 z 6 , | z | > 1 .
4.38.4 arccosh z = ( 2 ( z 1 ) ) 1 / 2 ( 1 + n = 1 ( 1 ) n 1 3 5 ( 2 n 1 ) 2 2 n n ! ( 2 n + 1 ) ( z 1 ) n ) , z > 0 , | z 1 | 2 .
4.38.7 arctanh z = z 1 z 2 ( 1 + 2 3 z 2 z 2 1 + 2 4 3 5 ( z 2 z 2 1 ) 2 + ) , ( z 2 ) < 1 2 ,
4.38.12 d d z arccsch z = 1 z ( 1 + z 2 ) 1 / 2 , z 0 .
5: 25.10 Zeros
The product representation (25.2.11) implies ζ ( s ) 0 for s > 1 . …The functional equation (25.4.1) implies ζ ( 2 n ) = 0 for n = 1 , 2 , 3 , . … is chosen to make Z ( t ) real, and ph Γ ( 1 4 + 1 2 i t ) assumes its principal value. …Because Z ( t ) changes sign infinitely often, ζ ( 1 2 + i t ) has infinitely many zeros with t real. … More than 41% of all the zeros in the critical strip lie on the critical line (Bui et al. (2011)). …
6: 4.37 Inverse Hyperbolic Functions
In (4.37.2) the integration path may not pass through either of the points ± 1 , and the function ( t 2 1 ) 1 / 2 assumes its principal value when t ( 1 , ) . …In (4.37.3) the integration path may not intersect ± 1 . … Arcsinh z and Arccsch z have branch points at z = ± i ; the other four functions have branch points at z = ± 1 . … On the part of the cuts from 1 to 1 On the part of the cut from to 1
7: 4.23 Inverse Trigonometric Functions
In (4.23.1) and (4.23.2) the integration paths may not pass through either of the points t = ± 1 . The function ( 1 t 2 ) 1 / 2 assumes its principal value when t ( 1 , 1 ) ; elsewhere on the integration paths the branch is determined by continuity. … Care needs to be taken on the cuts, for example, if 0 < x < then 1 / ( x + i 0 ) = ( 1 / x ) i 0 . … For example, from the heading and last entry in the penultimate column we have arcsec a = arccot ( ( a 2 1 ) 1 / 2 ) . … Equivalently, and again when 1 2 π < x < 1 2 π , …
8: Bibliography B
  • G. E. Barr (1968) A note on integrals involving parabolic cylinder functions. SIAM J. Appl. Math. 16 (1), pp. 71–74.
  • R. L. Bishop (1981) Rainbow over Woolsthorpe Manor. Notes and Records Roy. Soc. London 36 (1), pp. 3–11 (1 plate).
  • J. M. Borwein and P. B. Borwein (1991) A cubic counterpart of Jacobi’s identity and the AGM. Trans. Amer. Math. Soc. 323 (2), pp. 691–701.
  • H. M. Bui, B. Conrey, and M. P. Young (2011) More than 41% of the zeros of the zeta function are on the critical line. Acta Arith. 150 (1), pp. 35–64.
  • P. G. Burke (1970) A program to calculate a general recoupling coefficient. Comput. Phys. Comm. 1 (4), pp. 241–250.
  • 9: 16.17 Definition
    §16.17 Definition
    Then the Meijer G -function is defined via the Mellin–Barnes integral representation: … When more than one of Cases (i), (ii), and (iii) is applicable the same value is obtained for the Meijer G -function. Assume p q , no two of the bottom parameters b j , j = 1 , , m , differ by an integer, and a j b k is not a positive integer when j = 1 , 2 , , n and k = 1 , 2 , , m . Then …
    10: Possible Errors in DLMF
    One source of confusion, rather than actual errors, are some new functions which differ from those in Abramowitz and Stegun (1964) by scaling, shifts or constraints on the domain; see the Info box (click or hover over the [Uncaptioned image] icon) for links to defining formula. …Errors in the printed Handbook may already have been corrected in the online version; please consult Errata. …