About the Project

Bernoulli numbers

AdvancedHelp

(0.003 seconds)

1—10 of 59 matching pages

1: 24.1 Special Notation
Bernoulli Numbers and Polynomials
The origin of the notation B n , B n ( x ) , is not clear. …
2: 24.14 Sums
§24.14 Sums
24.14.2 k = 0 n ( n k ) B k B n k = ( 1 n ) B n n B n 1 .
24.14.6 k = 0 n ( n k ) 2 k B k E n k = 2 ( 1 2 n 1 ) B n n E n 1 .
24.14.8 ( 2 n ) ! ( 2 j ) ! ( 2 k ) ! ( 2 ) ! B 2 j B 2 k B 2 = ( n 1 ) ( 2 n 1 ) B 2 n + n ( n 1 2 ) B 2 n 2 ,
24.14.10 ( 2 n ) ! ( 2 j ) ! ( 2 k ) ! ( 2 ) ! ( 2 m ) ! B 2 j B 2 k B 2 B 2 m = ( 2 n + 3 3 ) B 2 n 4 3 n 2 ( 2 n 1 ) B 2 n 2 .
3: 24.19 Methods of Computation
Equations (24.5.3) and (24.5.4) enable B n and E n to be computed by recurrence. …
B 2 n = N 2 n D 2 n .
For algorithms for computing B n , E n , B n ( x ) , and E n ( x ) see Spanier and Oldham (1987, pp. 37, 41, 171, and 179–180).
§24.19(ii) Values of B n Modulo p
For number-theoretic applications it is important to compute B 2 n ( mod p ) for 2 n p 3 ; in particular to find the irregular pairs ( 2 n , p ) for which B 2 n 0 ( mod p ) . …
4: 24.10 Arithmetic Properties
24.10.1 B 2 n + ( p 1 ) | 2 n 1 p = integer ,
The denominator of B 2 n is the product of all these primes p .
24.10.2 p B 2 n p 1 ( mod p + 1 ) ,
24.10.3 B m m B n n ( mod p ) ,
24.10.4 ( 1 p m 1 ) B m m ( 1 p n 1 ) B n n ( mod p + 1 ) ,
5: 24.5 Recurrence Relations
§24.5(ii) Other Identities
24.5.6 k = 2 n ( n k 2 ) B k k = 1 ( n + 1 ) ( n + 2 ) B n + 1 , n = 2 , 3 , ,
24.5.7 k = 0 n ( n k ) B k n + 2 k = B n + 1 n + 1 , n = 1 , 2 , ,
24.5.8 k = 0 n 2 2 k B 2 k ( 2 k ) ! ( 2 n + 1 2 k ) ! = 1 ( 2 n ) ! , n = 1 , 2 , .
§24.5(iii) Inversion Formulas
6: 4.19 Maclaurin Series and Laurent Series
In (4.19.3)–(4.19.9), B n are the Bernoulli numbers and E n are the Euler numbers (§§24.2(i)24.2(ii)).
4.19.3 tan z = z + z 3 3 + 2 15 z 5 + 17 315 z 7 + + ( 1 ) n 1 2 2 n ( 2 2 n 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , | z | < 1 2 π ,
4.19.4 csc z = 1 z + z 6 + 7 360 z 3 + 31 15120 z 5 + + ( 1 ) n 1 2 ( 2 2 n 1 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , 0 < | z | < π ,
4.19.6 cot z = 1 z z 3 z 3 45 2 945 z 5 ( 1 ) n 1 2 2 n B 2 n ( 2 n ) ! z 2 n 1 , 0 < | z | < π ,
4.19.7 ln ( sin z z ) = n = 1 ( 1 ) n 2 2 n 1 B 2 n n ( 2 n ) ! z 2 n , | z | < π ,
7: 24.21 Software
§24.21(ii) B n , B n ( x ) , E n , and E n ( x )
8: 24.15 Related Sequences of Numbers
§24.15(i) Genocchi Numbers
24.15.2 G n = 2 ( 1 2 n ) B n .
§24.15(ii) Tangent Numbers
§24.15(iii) Stirling Numbers
24.15.6 B n = k = 0 n ( 1 ) k k ! S ( n , k ) k + 1 ,
9: 4.33 Maclaurin Series and Laurent Series
4.33.3 tanh z = z z 3 3 + 2 15 z 5 17 315 z 7 + + 2 2 n ( 2 2 n 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , | z | < 1 2 π .
For B 2 n see §24.2(i). …
10: 24.6 Explicit Formulas
§24.6 Explicit Formulas
24.6.1 B 2 n = k = 2 2 n + 1 ( 1 ) k 1 k ( 2 n + 1 k ) j = 1 k 1 j 2 n ,
24.6.2 B n = 1 n + 1 k = 1 n j = 1 k ( 1 ) j j n ( n + 1 k j ) / ( n k ) ,
24.6.9 B n = k = 0 n 1 k + 1 j = 0 k ( 1 ) j ( k j ) j n ,
24.6.11 B n = n 2 n ( 2 n 1 ) k = 1 n j = 0 k 1 ( 1 ) j + 1 ( n k ) j n 1 ,