30.7 Graphics30.9 Asymptotic Approximations and Expansions

§30.8 Expansions in Series of Ferrers Functions

Contents

§30.8(i) Functions of the First Kind

30.8.1\mathop{\mathsf{Ps}^{{m}}_{{n}}\/}\nolimits\!\left(x,\gamma^{2}\right)=\sum _{{k=-R}}^{{\infty}}(-1)^{k}a^{m}_{{n,k}}(\gamma^{2})\mathop{\mathsf{P}^{{m}}_{{n+2k}}\/}\nolimits\!\left(x\right),

where \mathop{\mathsf{P}^{{m}}_{{n+2k}}\/}\nolimits\!\left(x\right) is the Ferrers function of the first kind (§14.3(i)), R=\left\lfloor\frac{1}{2}(n-m)\right\rfloor, and the coefficients a^{m}_{{n,k}}(\gamma^{2}) are given by

30.8.2a^{m}_{{n,k}}(\gamma^{2})=(-1)^{k}\left(n+2k+\tfrac{1}{2}\right)\frac{(n-m+2k)!}{(n+m+2k)!}\*\int _{{-1}}^{1}\mathop{\mathsf{Ps}^{{m}}_{{n}}\/}\nolimits\!\left(x,\gamma^{2}\right)\mathop{\mathsf{P}^{{m}}_{{n+2k}}\/}\nolimits\!\left(x\right)dx.

Let

30.8.3
A_{k}=-\gamma^{2}\frac{(n-m+2k-1)(n-m+2k)}{(2n+4k-3)(2n+4k-1)},
B_{k}=(n+2k)(n+2k+1)-2\gamma^{2}\frac{(n+2k)(n+2k+1)-1+m^{2}}{(2n+4k-1)(2n+4k+3)},
C_{k}=-\gamma^{2}\frac{(n+m+2k+1)(n+m+2k+2)}{(2n+4k+3)(2n+4k+5)}.

Then the set of coefficients a^{m}_{{n,k}}(\gamma^{2}), k=-R,-R+1,-R+2,\dots is the solution of the difference equation

30.8.4A_{k}f_{{k-1}}+\left(B_{k}-\mathop{\lambda^{{m}}_{{n}}\/}\nolimits\!\left(\gamma^{2}\right)\right)f_{k}+C_{k}f_{{k+1}}=0,

(note that A_{{-R}}=0) that satisfies the normalizing condition

30.8.5\sum _{{k=-R}}^{{\infty}}a_{{n,k}}^{m}(\gamma^{2})a_{{n,k}}^{{-m}}(\gamma^{2})\frac{1}{2n+4k+1}=\frac{1}{2n+1},

with

30.8.6a_{{n,k}}^{{-m}}(\gamma^{2})=\frac{(n-m)!(n+m+2k)!}{(n+m)!(n-m+2k)!}a_{{n,k}}^{m}(\gamma^{2}).

Also, as k\to\infty,

30.8.7\frac{k^{2}a^{m}_{{n,k}}(\gamma^{2})}{a^{m}_{{n,k-1}}(\gamma^{2})}=\frac{\gamma^{2}}{16}+\mathop{O\/}\nolimits\!\left(\frac{1}{k}\right),

and

30.8.8\frac{\mathop{\lambda^{{m}}_{{n}}\/}\nolimits\!\left(\gamma^{2}\right)-B_{k}}{A_{k}}\frac{a^{m}_{{n,k}}(\gamma^{2})}{a^{m}_{{n,k-1}}(\gamma^{2})}=1+\mathop{O\/}\nolimits\!\left(\frac{1}{k^{4}}\right).

§30.8(ii) Functions of the Second Kind

30.8.9\mathop{\mathsf{Qs}^{{m}}_{{n}}\/}\nolimits\!\left(x,\gamma^{2}\right)=\sum _{{k=-\infty}}^{{-N-1}}(-1)^{k}{a^{{\prime}}}^{m}_{{n,k}}(\gamma^{2})\mathop{\mathsf{P}^{{m}}_{{n+2k}}\/}\nolimits\!\left(x\right)+\sum _{{k=-N}}^{{\infty}}(-1)^{k}a^{m}_{{n,k}}(\gamma^{2})\mathop{\mathsf{Q}^{{m}}_{{n+2k}}\/}\nolimits\!\left(x\right),

where \mathop{\mathsf{P}^{{m}}_{{n}}\/}\nolimits and \mathop{\mathsf{Q}^{{m}}_{{n}}\/}\nolimits are again the Ferrers functions and N=\left\lfloor\frac{1}{2}(n+m)\right\rfloor. The coefficients a^{m}_{{n,k}}(\gamma^{2}) satisfy (30.8.4) for all k when we set a^{m}_{{n,k}}(\gamma^{2})=0 for k<-N. For k\geq-R they agree with the coefficients defined in §30.8(i). For k=-N,-N+1,\dots,-R-1 they are determined from (30.8.4) by forward recursion using a^{m}_{{n,-N-1}}(\gamma^{2})=0. The set of coefficients {a^{{\prime}}}^{m}_{{n,k}}(\gamma^{2}), k=-N-1,-N-2,\dots, is the recessive solution of (30.8.4) as k\to-\infty that is normalized by

30.8.10A_{{-N-1}}{a^{{\prime}}}^{m}_{{n,-N-2}}(\gamma^{2})+{\left(B_{{-N-1}}-\mathop{\lambda^{{m}}_{{n}}\/}\nolimits\!\left(\gamma^{2}\right)\right){a^{{\prime}}}^{m}_{{n,-N-1}}(\gamma^{2})}+C^{{\prime}}a^{m}_{{n,-N}}(\gamma^{2})=0,

with

30.8.11C^{{\prime}}=\begin{cases}\dfrac{\gamma^{2}}{4m^{2}-1},&\mbox{$n-m$ even},\\
-\dfrac{\gamma^{2}}{(2m-1)(2m-3)},&\mbox{$n-m$ odd}.\end{cases}

It should be noted that if the forward recursion (30.8.4) beginning with f_{{-N-1}}=0, f_{{-N}}=1 leads to f_{{-R}}=0, then a^{m}_{{n,k}}(\gamma^{2}) is undefined for n<-R and \mathop{\mathsf{Qs}^{{m}}_{{n}}\/}\nolimits\!\left(x,\gamma^{2}\right) does not exist.