About the Project

with real periods

AdvancedHelp

(0.003 seconds)

1—10 of 55 matching pages

1: 25.13 Periodic Zeta Function
The notation F ( x , s ) is used for the polylogarithm Li s ( e 2 π i x ) with x real:
25.13.1 F ( x , s ) n = 1 e 2 π i n x n s ,
25.13.2 F ( x , s ) = Γ ( 1 s ) ( 2 π ) 1 s ( e π i ( 1 s ) / 2 ζ ( 1 s , x ) + e π i ( s 1 ) / 2 ζ ( 1 s , 1 x ) ) , 0 < x < 1 , s > 1 ,
25.13.3 ζ ( 1 s , x ) = Γ ( s ) ( 2 π ) s ( e π i s / 2 F ( x , s ) + e π i s / 2 F ( x , s ) ) , s > 0 if 0 < x < 1 ; s > 1 if x = 1 .
2: 29.3 Definitions and Basic Properties
For each pair of values of ν and k there are four infinite unbounded sets of real eigenvalues h for which equation (29.2.1) has even or odd solutions with periods 2 K or 4 K . … They are called Lamé functions with real periods and of order ν , or more simply, Lamé functions. …
3: 29.12 Definitions
Table 29.12.1: Lamé polynomials.
ν
eigenvalue
h
eigenfunction
w ( z )
polynomial
form
real
period
imag.
period
parity of
w ( z )
parity of
w ( z K )
parity of
w ( z K i K )
4: 25.2 Definition and Expansions
25.2.9 ζ ( s ) = k = 1 N 1 k s + N 1 s s 1 1 2 N s + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k N 1 s 2 k ( s + 2 n 2 n + 1 ) N B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n ; n , N = 1 , 2 , 3 , .
25.2.10 ζ ( s ) = 1 s 1 + 1 2 + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k ( s + 2 n 2 n + 1 ) 1 B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n , n = 1 , 2 , 3 , .
5: 25.11 Hurwitz Zeta Function
25.11.6 ζ ( s , a ) = 1 a s ( 1 2 + a s 1 ) s ( s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s 1 , s > 1 , a > 0 .
25.11.7 ζ ( s , a ) = 1 a s + 1 ( 1 + a ) s ( 1 2 + 1 + a s 1 ) + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k 1 ( 1 + a ) s + 2 k 1 ( s + 2 n 2 n + 1 ) 1 B ~ 2 n + 1 ( x ) ( x + a ) s + 2 n + 1 d x , s 1 , a > 0 , n = 1 , 2 , 3 , , s > 2 n .
25.11.19 ζ ( s , a ) = ln a a s ( 1 2 + a s 1 ) a 1 s ( s 1 ) 2 + s ( s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ln ( x + a ) ( x + a ) s + 2 d x ( 2 s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s > 1 , s 1 , a > 0 .
25.11.20 ( 1 ) k ζ ( k ) ( s , a ) = ( ln a ) k a s ( 1 2 + a s 1 ) + k ! a 1 s r = 0 k 1 ( ln a ) r r ! ( s 1 ) k r + 1 s ( s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ( ln ( x + a ) ) k ( x + a ) s + 2 d x + k ( 2 s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ( ln ( x + a ) ) k 1 ( x + a ) s + 2 d x k ( k 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ( ln ( x + a ) ) k 2 ( x + a ) s + 2 d x , s > 1 , s 1 , a > 0 .
6: 24.2 Definitions and Generating Functions
E ~ n ( x + 1 ) = E ~ n ( x ) , x .
7: 3.5 Quadrature
If in addition f is periodic, f C k ( ) , and the integral is taken over a period, then … The integrand can be extended as a periodic C function on with period 2 π and as noted in §3.5(i), the trapezoidal rule is exceptionally efficient in this case. …
8: 24.17 Mathematical Applications
24.17.3 S n ( x ) = E ~ n ( x + 1 2 n + 1 2 ) E ~ n ( 1 2 n + 1 2 ) , n = 0 , 1 , ,
24.17.5 M n ( x ) = { B ~ n ( x ) B n , n  even , B ~ n ( x + 1 2 ) , n  odd .
24.17.8 F ( x ) = B ~ n ( x ) 2 n B n
9: 22.2 Definitions
As a function of z , with fixed k , each of the 12 Jacobian elliptic functions is doubly periodic, having two periods whose ratio is not real. …
10: 29.10 Lamé Functions with Imaginary Periods
§29.10 Lamé Functions with Imaginary Periods
29.10.1 h = ν ( ν + 1 ) h ,
29.10.3 d 2 w d z 2 + ( h ν ( ν + 1 ) k 2 sn 2 ( z , k ) ) w = 0 .
The first and the fourth functions have period 2 i K ; the second and the third have period 4 i K . …