About the Project

wave functions

AdvancedHelp

(0.004 seconds)

21—30 of 77 matching pages

21: 28.33 Physical Applications
β–Ί
28.33.1 2 W x 2 + 2 W y 2 ρ Ο„ ⁒ 2 W t 2 = 0 ,
β–Ί
  • McLachlan (1947, Chapters XVI–XIX) for applications of the wave equation to vibrational systems, electrical and thermal diffusion, electromagnetic wave guides, elliptical cylinders in viscous fluids, and diffraction of sound and electromagnetic waves.

  • β–Ί
  • Meixner and Schäfke (1954, §§4.3, 4.4) for elliptic membranes and electromagnetic waves.

  • β–Ί
  • Alhargan and Judah (1992), Germey (1964), Ragheb et al. (1991), and Sips (1967) for electromagnetic waves.

  • β–Ί
  • Vedeler (1950) for ships rolling among waves.

  • 22: 30.8 Expansions in Series of Ferrers Functions
    §30.8 Expansions in Series of Ferrers Functions
    β–Ί
    30.8.1 π–―π—Œ n m ⁑ ( x , Ξ³ 2 ) = k = R ( 1 ) k ⁒ a n , k m ⁑ ( Ξ³ 2 ) ⁒ 𝖯 n + 2 ⁒ k m ⁑ ( x ) ,
    β–Ί
    30.8.2 a n , k m ⁑ ( Ξ³ 2 ) = ( 1 ) k ⁒ ( n + 2 ⁒ k + 1 2 ) ⁒ ( n m + 2 ⁒ k ) ! ( n + m + 2 ⁒ k ) ! ⁒ 1 1 π–―π—Œ n m ⁑ ( x , Ξ³ 2 ) ⁒ 𝖯 n + 2 ⁒ k m ⁑ ( x ) ⁒ d x .
    β–Ί
    30.8.6 a n , k m ⁑ ( γ 2 ) = ( n m ) ! ⁒ ( n + m + 2 ⁒ k ) ! ( n + m ) ! ⁒ ( n m + 2 ⁒ k ) ! ⁒ a n , k m ⁑ ( γ 2 ) .
    β–Ί
    23: 33.1 Special Notation
    β–Ί
  • Greene et al. (1979):

    f ( 0 ) ⁑ ( Ο΅ , β„“ ; r ) = f ⁑ ( Ο΅ , β„“ ; r ) , f ⁑ ( Ο΅ , β„“ ; r ) = s ⁑ ( Ο΅ , β„“ ; r ) , g ⁑ ( Ο΅ , β„“ ; r ) = c ⁑ ( Ο΅ , β„“ ; r ) .

  • 24: 15.19 Methods of Computation
    β–ΊFor fast computation of F ⁑ ( a , b ; c ; z ) with a , b and c complex, and with application to Pöschl–Teller–Ginocchio potential wave functions, see Michel and Stoitsov (2008). …
    25: 7.21 Physical Applications
    β–ΊFried and Conte (1961) mentions the role of w ⁑ ( z ) in the theory of linearized waves or oscillations in a hot plasma; w ⁑ ( z ) is called the plasma dispersion function or Faddeeva (or Faddeyeva) function; see Faddeeva and Terent’ev (1954). … β–Ί
    26: Bibliography Y
    β–Ί
  • F. L. Yost, J. A. Wheeler, and G. Breit (1936) Coulomb wave functions in repulsive fields. Phys. Rev. 49 (2), pp. 174–189.
  • 27: 10.73 Physical Applications
    β–Ίβ–ΊMore recently, Bessel functions appear in the inverse problem in wave propagation, with applications in medicine, astronomy, and acoustic imaging. … β–Ί
    10.73.3 4 W + λ 2 ⁒ 2 W t 2 = 0 .
    β–Ί
    §10.73(ii) Spherical Bessel Functions
    β–ΊIn quantum mechanics the spherical Bessel functions arise in the solution of the Schrödinger wave equation for a particle in a central potential. …
    28: 30.14 Wave Equation in Oblate Spheroidal Coordinates
    β–Ί
    30.14.8 w 1 ⁑ ( ξ ) = a 1 ⁒ S n m ⁒ ( 1 ) ⁑ ( i ⁒ ξ , γ ) + b 1 ⁒ S n m ⁒ ( 2 ) ⁑ ( i ⁒ ξ , γ ) .
    β–Ί
    §30.14(v) The Interior Dirichlet Problem for Oblate Ellipsoids
    β–Ί β–Ί
    29: 30.2 Differential Equations
    β–Ί
    §30.2(i) Spheroidal Differential Equation
    30: Bibliography H
    β–Ί
  • S. Hanish, R. V. Baier, A. L. Van Buren, and B. J. King (1970) Tables of Radial Spheroidal Wave Functions, Vols. 1-3, Prolate, m = 0 , 1 , 2 ; Vols. 4-6, Oblate, m = 0 , 1 , 2 . Technical report Naval Research Laboratory, Washington, D.C..
  • β–Ί
  • L. E. Hoisington and G. Breit (1938) Calculation of Coulomb wave functions for high energies. Phys. Rev. 54 (8), pp. 627–628.
  • β–Ί
  • M. H. Hull and G. Breit (1959) Coulomb Wave Functions. In Handbuch der Physik, Bd. 41/1, S. Flügge (Ed.), pp. 408–465.
  • β–Ί
  • J. Humblet (1984) Analytical structure and properties of Coulomb wave functions for real and complex energies. Ann. Physics 155 (2), pp. 461–493.
  • β–Ί
  • J. Humblet (1985) Bessel function expansions of Coulomb wave functions. J. Math. Phys. 26 (4), pp. 656–659.