About the Project

von Staudt–Clausen theorem

AdvancedHelp

(0.001 seconds)

11—20 of 130 matching pages

11: Bibliography M
  • W. Magnus, F. Oberhettinger, and R. P. Soni (1966) Formulas and Theorems for the Special Functions of Mathematical Physics. 3rd edition, Springer-Verlag, New York-Berlin.
  • C. S. Meijer (1932) Über die asymptotische Entwicklung von 0 i ( arg w μ ) e ν z w sinh z 𝑑 z , ( π 2 < μ < π 2 ) für große Werte von | w | und | ν | . I, II. Proc. Akad. Wet. Amsterdam 35, pp. 1170–1180, 1291–1303 (German).
  • S. C. Milne (1985a) A q -analog of the F 4 5 ( 1 ) summation theorem for hypergeometric series well-poised in 𝑆𝑈 ( n ) . Adv. in Math. 57 (1), pp. 14–33.
  • S. C. Milne (1988) A q -analog of the Gauss summation theorem for hypergeometric series in U ( n ) . Adv. in Math. 72 (1), pp. 59–131.
  • S. C. Milne (1997) Balanced Θ 2 3 summation theorems for U ( n ) basic hypergeometric series. Adv. Math. 131 (1), pp. 93–187.
  • 12: Bibliography
  • J. Achenbach (1986) Numerik: Implementierung von Zylinderfunktionen. Elektrotechnik, Friedr. Vieweg & Sohn, Braunschweig-Wiesbaden.
  • W. A. Al-Salam (1990) Characterization theorems for orthogonal polynomials. In Orthogonal Polynomials (Columbus, OH, 1989), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 294, pp. 1–24.
  • H. Alzer and S. Qiu (2004) Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172 (2), pp. 289–312.
  • T. M. Apostol (1952) Theorems on generalized Dedekind sums. Pacific J. Math. 2 (1), pp. 1–9.
  • T. M. Apostol (2000) A Centennial History of the Prime Number Theorem. In Number Theory, Trends Math., pp. 1–14.
  • 13: Bibliography D
  • S. C. Dhar (1940) Note on the addition theorem of parabolic cylinder functions. J. Indian Math. Soc. (N. S.) 4, pp. 29–30.
  • H. Ding, K. I. Gross, and D. St. P. Richards (1996) Ramanujan’s master theorem for symmetric cones. Pacific J. Math. 175 (2), pp. 447–490.
  • P. G. L. Dirichlet (1837) Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält. Abhandlungen der Königlich Preussischen Akademie der Wissenschaften von 1837, pp. 45–81 (German).
  • P. G. L. Dirichlet (1849) Über die Bestimmung der mittleren Werthe in der Zahlentheorie. Abhandlungen der Königlich Preussischen Akademie der Wissenschaften von 1849, pp. 69–83 (German).
  • J. Dougall (1907) On Vandermonde’s theorem, and some more general expansions. Proc. Edinburgh Math. Soc. 25, pp. 114–132.
  • 14: 25.19 Tables
  • Abramowitz and Stegun (1964) tabulates: ζ ( n ) , n = 2 , 3 , 4 , , 20D (p. 811); Li 2 ( 1 x ) , x = 0 ( .01 ) 0.5 , 9D (p. 1005); f ( θ ) , θ = 15 ( 1 ) 30 ( 2 ) 90 ( 5 ) 180 , f ( θ ) + θ ln θ , θ = 0 ( 1 ) 15 , 6D (p. 1006). Here f ( θ ) denotes Clausen’s integral, given by the right-hand side of (25.12.9).

  • Cloutman (1989) tabulates Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for s = 1 2 , 1 2 , 3 2 , 5 2 , x = 5 ( .05 ) 25 , to 12S.

  • Fletcher et al. (1962, §22.1) lists many sources for earlier tables of ζ ( s ) for both real and complex s . §22.133 gives sources for numerical values of coefficients in the Riemann–Siegel formula, §22.15 describes tables of values of ζ ( s , a ) , and §22.17 lists tables for some Dirichlet L -functions for real characters. For tables of dilogarithms, polylogarithms, and Clausen’s integral see §§22.84–22.858.

  • 15: Bibliography B
  • H. F. Baker (1995) Abelian Functions: Abel’s Theorem and the Allied Theory of Theta Functions. Cambridge University Press, Cambridge.
  • M. V. Berry (1976) Waves and Thom’s theorem. Advances in Physics 25 (1), pp. 1–26.
  • R. Bulirsch and J. Stoer (1968) II. Darstellung von Funktionen in Rechenautomaten. In Mathematische Hilfsmittel des Ingenieurs. Teil III, R. Sauer and I. Szabó (Eds.),
  • 16: Bibliography J
  • C. G. J. Jacobi (1829) Fundamenta Nova Theoriae Functionum Ellipticarum. Regiomonti, Sumptibus fratrum Bornträger.
  • 17: Bibliography V
  • H. von Koch (1901) Über die Riemann’sche Primzahlfunction. Math. Ann. 55, pp. 441–464 (German).
  • 18: Bibliography H
  • D. Hilbert (1909) Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n ter Potenzen (Waringsches Problem). Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, pp. 17–36 (German).
  • G. W. Hill (1981) Algorithm 571: Statistics for von Mises’ and Fisher’s distributions of directions: I 1 ( x ) / I 0 ( x ) , I 1.5 ( x ) / I 0.5 ( x ) and their inverses [S14]. ACM Trans. Math. Software 7 (2), pp. 233–238.
  • 19: 27.15 Chinese Remainder Theorem
    §27.15 Chinese Remainder Theorem
    The Chinese remainder theorem states that a system of congruences x a 1 ( mod m 1 ) , , x a k ( mod m k ) , always has a solution if the moduli are relatively prime in pairs; the solution is unique (mod m ), where m is the product of the moduli. This theorem is employed to increase efficiency in calculating with large numbers by making use of smaller numbers in most of the calculation. …By the Chinese remainder theorem each integer in the data can be uniquely represented by its residues (mod m 1 ), (mod m 2 ), (mod m 3 ), and (mod m 4 ), respectively. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. …
    20: 25.21 Software
    §25.21(vi) Clausen’s Integral